• Browse all
One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm {NN}}}$ =2.76 TeV

The ALICE collaboration
Phys.Rev. C92 (2015) 054908, 2015

Abstract (data abstract)
CERN-LHC. The size of the particle emission region in high-energy collisions can be deduced using the femtoscopic correlations of particle pairs at low relative momentum. Such correlations arise due to quantum statistics and Coulomb and strong final state interactions. In this paper, results are presented from femtoscopic analyses of $\pi^{\pm}\pi^{\pm}$, ${\rm K}^{\pm}{\rm K}^{\pm}$, ${\rm K}^{0}_S{\rm K}^{0}_S$, ${\rm pp}$, and ${\rm \overline{p}}{\rm \overline{p}}$ correlations from Pb-Pb collisions at $\sqrt{s_{\mathrm {NN}}}=2.76$ TeV by the ALICE experiment at the LHC. One-dimensional radii of the system are extracted from correlation functions in terms of the invariant momentum difference of the pair. The comparison of the measured radii with the predictions from a hydrokinetic model is discussed. The pion and kaon source radii display a monotonic decrease with increasing average pair transverse mass $m_{\rm T}$ which is consistent with hydrodynamic model predictions for central collisions. The kaon and proton source sizes can be reasonably described by approximate $m_{\rm T}$-scaling.

  • Table 1

    Data from Figure 4

    10.17182/hepdata.72256.v1/t1

    Correlation function for ${\rm K^{\pm}}{\rm K^{\pm}}$ for centrality 0-10% and $\left < k_{\rm T} \right > = 0.35$ GeV/$c$.

  • Table 2

    Data from Figure 5

    10.17182/hepdata.72256.v1/t2

    Correlation function for ${\rm K^{ 0}_S}{\rm K^{ 0}_S}$ for centrality 0-10% and $\left < k_{\rm T} \right > = 0.48$...

  • Table 3

    Data from Figure 6

    10.17182/hepdata.72256.v1/t3

    Correlation function for ${\rm \overline{p}}{\rm \overline{p}}$ for centrality 0-10% and $\left < k_{\rm T} \right > = 1.0$ GeV/$c$.

  • Table 4

    Data from Figure 7

    10.17182/hepdata.72256.v1/t4

    $\lambda_{{\rm \overline{p}}{\rm \overline{p}}}+\lambda_{{\rm \overline{p}} \overline{\Lambda}}$ vs. $m_{\rm T}$ for $0-10\%$ centrality for ${\rm \overline{p}}{\rm \overline{p}}$.

  • Table 5

    Data from Figure 7

    10.17182/hepdata.72256.v1/t5

    $\lambda_{{\rm \overline{p}}{\rm \overline{p}}}+\lambda_{{\rm \overline{p}} \overline{\Lambda}}$ vs. $m_{\rm T}$ for $10-30\%$ centrality for ${\rm \overline{p}}{\rm \overline{p}}$.

  • Table 6

    Data from Figure 7

    10.17182/hepdata.72256.v1/t6

    $\lambda_{{\rm \overline{p}}{\rm \overline{p}}}+\lambda_{{\rm \overline{p}} \overline{\Lambda}}$ vs. $m_{\rm T}$ for $30-50\%$ centrality for ${\rm \overline{p}}{\rm \overline{p}}$.

  • Table 7

    Data from Figure 7

    10.17182/hepdata.72256.v1/t7

    $\lambda_{{\rm p}{\rm {p}}}+\lambda_{{\rm {p}}\Lambda}$ vs. $m_{\rm T}$ for $0-10\%$ centrality for ${\rm {p}}{\rm {p}}$.

  • Table 8

    Data from Figure 7

    10.17182/hepdata.72256.v1/t8

    $\lambda_{{\rm p}{\rm {p}}}+\lambda_{{\rm {p}}\Lambda}$ vs. $m_{\rm T}$ for $10-30\%$ centrality for ${\rm {p}}{\rm {p}}$.

  • Table 9

    Data from Figure 7

    10.17182/hepdata.72256.v1/t9

    $\lambda_{{\rm p}{\rm {p}}}+\lambda_{{\rm {p}}\Lambda}$ vs. $m_{\rm T}$ for $30-50\%$ centrality for ${\rm {p}}{\rm {p}}$.

  • Table 10

    Data from Figure 7

    10.17182/hepdata.72256.v1/t10

    $\lambda$ parameter vs. $m_{\rm T}$ for $0-10\%$ centrality for ${\rm K^{ 0}_S}{\rm K^{ 0}_S}$.

  • Table 11

    Data from Figure 7

    10.17182/hepdata.72256.v1/t11

    $\lambda$ parameter vs. $m_{\rm T}$ for $10-30\%$ centrality for ${\rm K^{ 0}_S}{\rm K^{ 0}_S}$.

  • Table 12

    Data from Figure 7

    10.17182/hepdata.72256.v1/t12

    $\lambda$ parameter vs. $m_{\rm T}$ for $30-50\%$ centrality for ${\rm K^{ 0}_S}{\rm K^{ 0}_S}$.

  • Table 13

    Data from Figure 7

    10.17182/hepdata.72256.v1/t13

    $\lambda$ parameter vs. $m_{\rm T}$ for $0-10\%$ centrality for ${\rm K^{\pm}}{\rm K^{\pm}}$.

  • Table 14

    Data from Figure 7

    10.17182/hepdata.72256.v1/t14

    $\lambda$ parameter vs. $m_{\rm T}$ for $10-30\%$ centrality for ${\rm K^{\pm}}{\rm K^{\pm}}$.

  • Table 15

    Data from Figure 7

    10.17182/hepdata.72256.v1/t15

    $\lambda$ parameter vs. $m_{\rm T}$ for $30-50\%$ centrality for ${\rm K^{\pm}}{\rm K^{\pm}}$.

  • Table 16

    Data from Figure 7

    10.17182/hepdata.72256.v1/t16

    $\lambda$ parameter vs. $m_{\rm T}$ for $0-10\%$ centrality for $\pi^{\pm}\pi^{\pm}$.

  • Table 17

    Data from Figure 7

    10.17182/hepdata.72256.v1/t17

    $\lambda$ parameter vs. $m_{\rm T}$ for $10-30\%$ centrality for $\pi^{\pm}\pi^{\pm}$.

  • Table 18

    Data from Figure 7

    10.17182/hepdata.72256.v1/t18

    $\lambda$ parameter vs. $m_{\rm T}$ for $30-50\%$ centrality for $\pi^{\pm}\pi^{\pm}$.

  • Table 19

    Data from Figure 8

    10.17182/hepdata.72256.v1/t19

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $0-10\%$ centrality for ${\rm \overline{p}}{\rm \overline{p}}$.

  • Table 20

    Data from Figure 8

    10.17182/hepdata.72256.v1/t20

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $10-30\%$ centrality for ${\rm \overline{p}}{\rm \overline{p}}$.

  • Table 21

    Data from Figure 8

    10.17182/hepdata.72256.v1/t21

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $30-50\%$ centrality for ${\rm \overline{p}}{\rm \overline{p}}$.

  • Table 22

    Data from Figure 8

    10.17182/hepdata.72256.v1/t22

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $0-10\%$ centrality for ${\rm {p}}{\rm {p}}$.

  • Table 23

    Data from Figure 8

    10.17182/hepdata.72256.v1/t23

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $10-30\%$ centrality for ${\rm {p}}{\rm {p}}$.

  • Table 24

    Data from Figure 8

    10.17182/hepdata.72256.v1/t24

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $30-50\%$ centrality for ${\rm {p}}{\rm {p}}$.

  • Table 25

    Data from Figure 8

    10.17182/hepdata.72256.v1/t25

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $0-10\%$ centrality for ${\rm K^{ 0}_S}{\rm K^{ 0}_S}$.

  • Table 26

    Data from Figure 8

    10.17182/hepdata.72256.v1/t26

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $10-30\%$ centrality for ${\rm K^{ 0}_S}{\rm K^{ 0}_S}$.

  • Table 27

    Data from Figure 8

    10.17182/hepdata.72256.v1/t27

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $30-50\%$ centrality for ${\rm K^{ 0}_S}{\rm K^{ 0}_S}$.

  • Table 28

    Data from Figure 8

    10.17182/hepdata.72256.v1/t28

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $0-10\%$ centrality for ${\rm K^{\pm}}{\rm K^{\pm}}$.

  • Table 29

    Data from Figure 8

    10.17182/hepdata.72256.v1/t29

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $10-30\%$ centrality for ${\rm K^{\pm}}{\rm K^{\pm}}$.

  • Table 30

    Data from Figure 8

    10.17182/hepdata.72256.v1/t30

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $30-50\%$ centrality for ${\rm K^{\pm}}{\rm K^{\pm}}$.

  • Table 31

    Data from Figure 8

    10.17182/hepdata.72256.v1/t31

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $0-10\%$ centrality for $\pi^{\pm}\pi^{\pm}$.

  • Table 32

    Data from Figure 8

    10.17182/hepdata.72256.v1/t32

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $10-30\%$ centrality for $\pi^{\pm}\pi^{\pm}$.

  • Table 33

    Data from Figure 8

    10.17182/hepdata.72256.v1/t33

    $R_{\rm inv}$ vs. $m_{\rm T}$ for $30-50\%$ centrality for $\pi^{\pm}\pi^{\pm}$.

Loading Data...