A measurement of the $K^{+} \to \pi^{+} \mu^{+} \mu^{-}$ decay

The NA62 collaboration Cortina Gil, Eduardo ; Potrebenikov, Yuri ; Kleimenova, Alina ; et al.
JHEP 11 (2022) 011, 2022.
Inspire Record 2150453 DOI 10.17182/hepdata.135498

A sample of 2.8 × 10$^{4}$K$^{+}$ → π$^{+}$μ$^{+}$μ$^{−}$ candidates with negligible background was collected by the NA62 experiment at the CERN SPS in 2017–2018. The model-independent branching fraction is measured to be (9.15 ± 0.08) × 10$^{−8}$, a factor three more precise than previous measurements. The decay form factor is presented as a function of the squared dimuon mass. A measurement of the form factor parameters and their uncertainties is performed using a description based on Chiral Perturbation Theory at $ \mathcal{O} $(p$^{6}$).

2 data tables

Reconstructed $K^+ \to \pi^+ \mu^+ \mu^-$ differential decay width. Only statistical errors are provided. The 4-body differential decay width (shown in green in Figure 3-left) is, in general, required to fit these data points; fitting the squared modulus of the form factor may therefore be preferable.

Reconstructed squared modulus of the $K^+ \to \pi^+ \mu^+ \mu^-$ form factor. Only statistical errors are provided.


Measurement of the $e^+e^- \to\pi^+\pi^- $ process cross section with the SND detector at the VEPP-2000 collider in the energy region $0.525<\sqrt{s}<0.883$ GeV

The SND collaboration Achasov, M.N. ; Baykov, A.A. ; Barnyakov, A.Yu. ; et al.
JHEP 01 (2021) 113, 2021.
Inspire Record 1789269 DOI 10.17182/hepdata.114983

The cross section of the process $e^+ e^-\to\pi^+\pi^-$ has been measured in the Spherical Neutral Detector (SND) experiment at the VEPP-2000 $e^+e^-$ collider VEPP-2000 in the energy region $525 <\sqrt[]{s} <883$ MeV. The measurement is based on data with an integrated luminosity of about 4.6 pb$^{-1}$. The systematic uncertainty of the cross section determination is 0.8 % at $\sqrt{s}>0.600$ GeV. The $\rho$ meson parameters are obtained as $m_\rho = 775.3\pm 0.5\pm 0.6$ MeV, $\Gamma_\rho = 145.6\pm 0.6\pm 0.8$ MeV, $B_{\rho\to e^+ e^-}\times B_{\rho\to\pi^+\pi^-} = (4.89\pm 0.02\pm 0.04)\times 10^{-5}$, and the parameters of the $e^+ e^-\to\omega\to\pi^+\pi^-$ process, suppressed by $G$-parity, as $B_{\omega\to e^+ e^-}\times B_{\omega\to\pi^+\pi^-}= (1.32\pm 0.06\pm 0.02)\times 10^{-6} $ and $\phi_{\rho\omega} = 110.7\pm 1.5\pm1.0$ degrees.

3 data tables

The Born cross section of the process e+e- -> pi+pi- taking into account the radiative corrections due to the initial and final state radiation.

Measured value of the pion form factor

The bare e+e- -> pi+pi- undressed cross without vacuum polarization, but with the final state radiative correction.


Measurement of the $\pi^0$ electromagnetic transition form factor slope

The NA62 collaboration Lazzeroni, C. ; Lurkin, N. ; Romano, A. ; et al.
Phys.Lett.B 768 (2017) 38-45, 2017.
Inspire Record 1506406 DOI 10.17182/hepdata.77001

The NA62 experiment collected a large sample of charged kaon decays in 2007 with a highly efficient trigger for decays into electrons. A measurement of the $\pi^0$ electromagnetic transition form factor slope parameter from $1.11\times10^{6}$ fully reconstructed $K^\pm \to \pi^\pm \pi^0_D, \pi^0_D \to e^+ e^-\gamma$ events is reported. The measured value $a = (3.68 \pm 0.57)\times10^{-2}$ is in good agreement with theoretical expectations and previous measurements, and represents the most precise experimental determination of the slope in the time-like momentum transfer region.

1 data table

Number of reconstructed data events and MC events as a function of the Dalitz kinematic variable $x=(M_{ee}/M_{\pi^0})^2$. The MC events are reweighted to correspond to a TFF slope a=0. The MC sample is not normalized to the size of the data. The values of $x$ quoted in the table are the barycenters of the 50 variable size bins.


Measurement of the $\phi \to \pi^0 e^+e^-$ transition form factor with the KLOE detector

The KLOE-2 collaboration Anastasi, A. ; Babusci, D. ; Bencivenni, G. ; et al.
Phys.Lett.B 757 (2016) 362-367, 2016.
Inspire Record 1416825 DOI 10.17182/hepdata.77046

A measurement of the vector to pseudoscalar conversion decay $\phi \to \pi^0 e^+e^-$ with the KLOE experiment is presented. A sample of $\sim 9500$ signal events was selected from a data set of 1.7 fb$^{-1}$ of $e^+e^-$ collisions at $\sqrt{s} \sim m_{\phi}$ collected at the DA$\Phi$NE $e^+e^-$ collider. These events were used to obtain the first measurement of the transition form factor $| F_{\phi \pi^0}(q^2) |$ and a new measurement of the branching ratio of the decay: $\rm{BR}\,(\phi \to \pi^0 e^+e^-) = (\,1.35 \pm 0.05^{\,\,+0.05}_{\,\,-0.10}\,) \times 10 ^{-5}$. The result improves significantly on previous measurements and is in agreement with theoretical predictions.

1 data table

KLOE measurement of the transition form factor $| F_{\phi \, \pi^0}(q^2) |$ of the $\phi \to \pi^0 e^+e^-$ decay.


Study of $D^{+} \to K^{-} \pi^+ e^+ \nu_e$

The BESIII collaboration Ablikim, Medina ; Achasov, Mikhail N ; Ai, Xiaocong ; et al.
Phys.Rev.D 94 (2016) 032001, 2016.
Inspire Record 1411645 DOI 10.17182/hepdata.77048

We present an analysis of the decay $D^{+} \to K^{-} \pi^+ e^+ \nu_e$ based on data collected by the BESIII experiment at the $\psi(3770)$ resonance. Using a nearly background-free sample of 18262 events, we measure the branching fraction $\mathcal{B}(D^{+} \to K^{-} \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.08)\%$. For $0.8<m_{K\pi}<1.0$ GeV/$c^{2}$ the partial branching fraction is $\mathcal{B}(D^{+} \to K^{-} \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.07)\%$. A partial wave analysis shows that the dominant $\bar K^{*}(892)^{0}$ component is accompanied by an \emph{S}-wave contribution accounting for $(6.05\pm0.22\pm0.18)\%$ of the total rate and that other components are negligible. The parameters of the $\bar K^{*}(892)^{0}$ resonance and of the form factors based on the spectroscopic pole dominance predictions are also measured. We also present a measurement of the $\bar K^{*}(892)^{0}$ helicity basis form factors in a model-independent way.

2 data tables

The $S$-wave phase $\delta_{S}$ measured in the 12 $m_{K\pi}$ bins with statistical and systematic uncertainties. The systematic uncertainties include: (I) background fraction, (II) background shape, (III) the $\bar K_{0}^{*}(1430)^{0}$ mass and width, (IV) additional resonances, (V) tracking efficiency correction, (VI) PID efficiency correction.

Average form-factor products in the $K^{*}$-dominated region.


Version 2
Investigation of the ϱ-meson resonance with electron-positron colliding beams

Auslander, V.L. ; Budker, G.I. ; Pestov, Ju N. ; et al.
Phys.Lett.B 25 (1967) 433-435, 1967.
Inspire Record 1392895 DOI 10.17182/hepdata.29437

Preliminary results on the determination of the position and shape of the ϱ-meson resonance with electron-positron colliding beams are presented.

3 data tables

FITTED PEAK CROSS SECTION IS 1.2 +- 0.2 MUB.

Measured value of the pion form factor

Fitted peak cross section.


Version 4
Measurement of the $\mathrm e^+\mathrm e^-\rightarrow\mathrm\pi^+\mathrm\pi^-$ Cross Section between 600 and 900 MeV Using Initial State Radiation

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Adlarson, P. ; et al.
Phys.Lett.B 753 (2016) 629-638, 2016.
Inspire Record 1385603 DOI 10.17182/hepdata.73898

In Phys. Lett. B 753, 629-638 (2016) [arXiv:1507.08188] the BESIII collaboration published a cross section measurement of the process $e^+e^-\to \pi^+ \pi^-$ in the energy range between 600 and 900 MeV. In this erratum we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as $a_\mu^{\pi\pi\mathrm{, LO}}(600 - 900\,\mathrm{MeV}) = (368.2 \pm 1.5_{\rm stat} \pm 3.3_{\rm syst})\times 10^{-10}$. The central values of the cross section measurement and of $a_\mu^{\pi\pi\mathrm{, LO}}$, as well as the systematic uncertainties remain unchanged.

10 data tables

Results of the BESIII measurement of the cross section $\sigma^{\rm bare}_{\pi^+\pi^-(\gamma_{\rm FSR})} \equiv \sigma^{\rm bare}(e^+e^-\rightarrow\pi^+\pi^-(\gamma_{\rm FSR}))$ and the squared pion form factor $|F_\pi|^2$. The errors are statistical only. The value of $\sqrt{s'}$ represents the bin center. The 0.9$\%$ systematic uncertainty is fully correlated between any two bins.

Results for the bare cross section $\sigma^\text{bare}_{\pi^+\pi^-}$ and the pion form factor together with their statistical uncertainties. The systematical uncertainties are given by 0.9% (see <a href="https://inspirehep.net/literature/1385603">arXiv:1507.08188</a>).

Bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$ of the process $e^+e^-\to\pi^+\pi^-$ measured using the initial state radiation method. The data is corrected concerning final state radiation and vacuum polarization effects. The final state radiation is added using the Schwinger term at born level.

More…

Elastic electron scattering on helium 4

Repellin, J.P. ; Lehmann, P. ; Lefrançois, J. ; et al.
Phys.Lett. 16 (1965) 169-170, 1965.
Inspire Record 1385171 DOI 10.17182/hepdata.30380

None

1 data table

Axis error includes +- 2/2 contribution.


Study of the $e^+e^-\to K^+K^-$ reaction in the energy range from 2.6 to 8.0 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 072008, 2015.
Inspire Record 1383130 DOI 10.17182/hepdata.73784

The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.

1 data table

The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.


Observation of the Dalitz Decay $\eta' \to \gamma e^+e^-$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 92 (2015) 012001, 2015.
Inspire Record 1364494 DOI 10.17182/hepdata.73672

We report the first observation of the Dalitz decay $\eta' \to \gamma e^+e^-$, based on a data sample of 1.31 billion $J/\psi$ events collected with the BESIII detector. The $\eta'$ mesons are produced via the $J/\psi \to \gamma \eta'$ decay process. The ratio $\Gamma(\eta' \to \gamma e^+ e^-)/\Gamma(\eta'\to\gamma\gamma)$ is measured to be $(2.13\pm0.09(\text{stat.})\pm0.07(\text{sys.}))\times10^{-2}$. This corresponds to a branching fraction ${\cal B}(\eta' \to \gamma e^+e^-)= (4.69 \pm0.20(\text{stat.})\pm0.23(\text{sys.}))\times10^{-4}$. The transition form factor is extracted and different expressions are compared to the measured dependence on the $e^+e^-$ invariant mass. The results are consistent with the prediction of the Vector Meson Dominance model.

2 data tables

Fitted ($n^{\text{obs}}_i$) and efficiency-corrected ($n^{\text{corr}}_i$) signal yields for the eight $M(e^+e^-)$ bins, and ratios ($r_i$). The uncertainties are statistical only.

Values of $|F|^2$ in each $M(e^+e^-)$ bin.