Measurement of quarkonium production in proton--lead and proton--proton collisions at $5.02$ $\mathrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 171, 2018.
Inspire Record 1622737 DOI 10.17182/hepdata.82624

The modification of the production of $J/\psi$, $\psi(\mathrm{2S})$, and $\mit{\Upsilon}(n\mathrm{S})$ ($n = 1, 2, 3$) in $p$+Pb collisions with respect to their production in $pp$ collisions has been studied. The $p$+Pb and $pp$ datasets used in this paper correspond to integrated luminosities of $28$ $\mathrm{nb}^{-1}$ and $25$ $\mathrm{pb}^{-1}$ respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of $J/\psi$ and $\psi(\mathrm{2S})$ are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, $R_{p\mathrm{Pb}}$ for $J/\psi$ and $\mit{\Upsilon}(\mathrm{1S})$. No significant modification of the $J/\psi$ production is observed while $\mit{\Upsilon}(\mathrm{1S})$ production is found to be suppressed at low transverse momentum in $p$+Pb collisions relative to $pp$ collisions. The production of excited charmonium and bottomonium states is found to be suppressed relative to that of the ground states in central $p$+Pb collisions.

25 data tables

Summary of results for cross-section of non-prompt J/psi decaying to a muon pair in pp collisions at 5.02 TeV in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of non-prompt psi(2S) decaying to a muon pair in pp collisions at 5.02 TeV in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of prompt J/psi decaying to a muon pair in pp collisions at 5.02 TeV in nb/GeV. Uncertainties are statistical and systematic, respectively.

More…

Version 2
Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s}$=13 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 191, 2017.
Inspire Record 1614149 DOI 10.17182/hepdata.80041

Measurements of differential cross-sections of top-quark pair production in fiducial phase-spaces are presented as a function of top-quark and $t\bar{t}$ system kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$=13 TeV. The data set corresponds to an integrated luminosity of $3.2$ fb${}^{-1}$, recorded in 2015 with the ATLAS detector at the CERN Large Hadron Collider. Events with exactly one electron or muon and at least two jets in the final state are used for the measurement. Two separate selections are applied that each focus on different top-quark momentum regions, referred to as resolved and boosted topologies of the $t\bar{t}$ final state. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations by means of calculated $\chi^2$ and $p$-values.

56 data tables

Covariance matrix of the absolute cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.

Covariance matrix of the absolute cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.

Covariance matrix of the relative cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.

More…

Version 2
Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 765, 2017.
Inspire Record 1609448 DOI 10.17182/hepdata.78366

Observables sensitive to the anomalous production of events containing hadronic jets and missing momentum in the plane transverse to the proton beams at the Large Hadron Collider are presented. The observables are defined as a ratio of cross sections, for events containing jets and large missing transverse momentum to events containing jets and a pair of charged leptons from the decay of a $Z/\gamma^\ast$ boson. This definition minimises experimental and theoretical systematic uncertainties in the measurements. This ratio is measured differentially with respect to a number of kinematic properties of the hadronic system in two phase-space regions; one inclusive single-jet region and one region sensitive to vector-boson-fusion topologies. The data are found to be in agreement with the Standard Model predictions and used to constrain a variety of theoretical models for dark-matter production, including simplified models, effective field theory models, and invisible decays of the Higgs boson. The measurements use 3.2 fb$^{-1}$ of proton--proton collision data recorded by the ATLAS experiment at a centre-of-mass energy of 13 TeV and are fully corrected for detector effects, meaning that the data can be used to constrain new-physics models beyond those shown in this paper.

14 data tables

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the $\geq 1$ jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the $\geq 1$ jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the VBF jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

More…

Determination of the strong coupling constant $\alpha_s$ from transverse energy-energy correlations in multijet events at $\sqrt{s} = 8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 872, 2017.
Inspire Record 1609253 DOI 10.17182/hepdata.77269

Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to $\sqrt{s} = 8$ TeV proton-proton collisions with an integrated luminosity of 20.2 fb$^{-1}$. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of $\alpha_s(\mu)$ predicted in QCD up to scales over 1 TeV. A global fit to the transverse energy-energy correlation distributions yields $\alpha_s(m_Z) = 0.1162 \pm 0.0011 \mbox{ (exp.)}^{+0.0084}_{-0.0070} \mbox{ (theo.)}$, while a global fit to the asymmetry distributions yields a value of $\alpha_s(m_Z) = 0.1196 \pm 0.0013 \mbox{ (exp.)}^{+0.0075}_{-0.0045} \mbox{ (theo.)}$.

16 data tables

TEEC function for 800 GeV < HT2 < 850 GeV

ATEEC function for 800 GeV < HT2 < 850 GeV

TEEC function for 850 GeV < HT2 < 900 GeV

More…

Measurement of the inclusive jet cross-sections in proton--proton collisions at $\sqrt{s}= $8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2017) 020, 2017.
Inspire Record 1604271 DOI 10.17182/hepdata.76967

Inclusive jet production cross-sections are measured in proton--proton collisions at a centre-of-mass energy of $\sqrt{s}=$8 TeV recorded by the ATLAS experiment at the Large Hadron Collider at CERN. The total integrated luminosity of the analysed data set amounts to $20.2$ fb$^{-1}$. Double-differential cross-sections are measured for jets defined by the anti-$k_{t}$ jet clustering algorithm with radius parameters of $R=0.4$ and $R=0.6$ and are presented as a function of the jet transverse momentum, in the range between 70 GeV and 2.5 TeV and in six bins of the absolute jet rapidity, between 0 and 3.0. The measured cross-sections are compared to predictions of quantum chromodynamics, calculated at next-to-leading order in perturbation theory, and corrected for non-perturbative and electroweak effects. The level of agreement with predictions, using a selection of different parton distribution functions for the proton, is quantified. Tensions between the data and the theory predictions are observed.

12 data tables

rapidity bin 0 < |Y| < 0.5 anti-kt R=0.6

rapidity bin 0.5 < |Y| < 1.0 anti-kt R=0.6

rapidity bin 1.0 < |Y| < 1.5 anti-kt R=0.6

More…

Measurement of multi-particle azimuthal correlations in $pp$, $p$+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 428, 2017.
Inspire Record 1599077 DOI 10.17182/hepdata.77996

Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in $pp$ collisions at $\sqrt{s}$ = 5.02 and 13 TeV and in $p$+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in $p$+Pb and low-multiplicity Pb+Pb collisions. On the other hand, the $pp$ results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb+Pb, smaller in $p$+Pb and smallest in $pp$ collisions. The $pp$ results show no dependence on the collision energy, nor on the multiplicity.

95 data tables

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pp collisions at $\sqrt{s}$= 5.02 TeV.

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pp collisions at $\sqrt{s}$= 13 TeV.

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pPb collisions at $\sqrt{ s_{NN} }$= 5.02 TeV.

More…

Version 4
Measurement of $b$-hadron pair production with the ATLAS detector in proton-proton collisions at $\sqrt{s}=8$ TeV

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 062, 2017.
Inspire Record 1598613 DOI 10.17182/hepdata.80234

A measurement of $b$-hadron pair production is presented, based on a data set corresponding to an integrated luminosity of 11.4 fb$^{-1}$ of proton--proton collisions recorded at $\sqrt{s}=8$ TeV with the ATLAS detector at the LHC. Events are selected in which a $b$-hadron is reconstructed in a decay channel containing $J/\psi \rightarrow \mu\mu$, and a second $b$-hadron is reconstructed in a decay channel containing a muon. Results are presented in a fiducial volume defined by kinematic requirements on three muons based on those used in the analysis. The fiducial cross section is measured to be $17.7 \pm 0.1 ($stat.$) \pm 2.0 ($syst.$)$ nb. A number of normalised differential cross sections are also measured, and compared to predictions from the Pythia8, Herwig++, MadGraph5\_aMC@NLO+Pythia8 and Sherpa event generators, providing new constraints on heavy flavour production.

30 data tables

Normalised differential cross sections and corresponding uncertainties in bins of $\Delta R(J/\psi,\mu)$.

Transfer functions for $\Delta R(b-hadron,b-hadron)$.

$B_{c}$ and $B + D$ corrections removed from the fitted data for $\Delta R(J/\psi,\mu)$.

More…

Studies of $Z\gamma$ production in association with a high-mass dijet system in $pp$ collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 07 (2017) 107, 2017.
Inspire Record 1598259 DOI 10.17182/hepdata.77542

The production of a $Z$ boson and a photon in association with a high-mass dijet system is studied using 20.2fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV recorded with the ATLAS detector in 2012 at the Large Hadron Collider. Final states with a photon and a Z boson decaying into a pair of either electrons, muons, or neutrinos are analysed. Electroweak and total $pp \to Z\gamma j j$ cross-sections are extracted in two fiducial regions with different sensitivities to electroweak production processes. Quartic couplings of vector bosons are studied in regions of phase space with an enhanced contribution from pure electroweak production, sensitive to vector-boson scattering processes $VV \to Z\gamma$. No deviations from Standard Model predictions are observed and constraints are placed on anomalous couplings parameterized by higher-dimensional operators using effective field theory.

3 data tables

The measured fiducial sections of Zyjj in the charged-leptonic channel. In the measured cross-sections, the first uncertainty is the statistical uncertainty, and the second one is the combined systematic uncertainty.

95% confidence level cross-section upper limits on the $Z\gamma jj$ processes in both charged-leptonic and neutrino channels. The reconstruction efficiencies are provided as C-factors.

95% confidence level interval (expected and observed) on aQGC parameters (VBFNLO formalism) provided for different values of unitarity scale (Form Factor).


Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 95 (2017) 112005, 2017.
Inspire Record 1591327 DOI 10.17182/hepdata.77381

A measurement of the production cross section for two isolated photons in proton-proton collisions at a center-of-mass energy of $\sqrt{s}=8$ TeV is presented. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying $|\eta^{\gamma}|<1.37$ or ${1.56<|\eta^{\gamma}|<2.37}$ and transverse energies of respectively $E_{\mathrm{T,1}}^{\gamma}>40$ GeV and $E_{\mathrm{T,2}}^{\gamma}>30$ GeV for the two leading photons ordered in transverse energy produced in the interaction.The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The measured cross section integrated within the fiducial volume is $16.8 \pm 0.8$ pb. The data are compared to fixed-order QCD calculations at next-to-leading-order and next-to-next-to-leading-order accuracy as well as next-to-leading-order computations including resummation of initial-state gluon radiation at next-to-next-to-leading logarithm or matched to a parton shower, with relative uncertainties varying from 5% to 20%.

7 data tables

The measured fiducial (total xs).

The measured differential as a function of Mgg.

The measured differential as a function of pTgg.

More…

Search for dark matter at $\sqrt{s}=13$ TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 393, 2017.
Inspire Record 1591328 DOI 10.17182/hepdata.77382

Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 $\textrm fb^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, exclusion limits in models where dark-matter candidates are pair-produced are determined. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750-1200 GeV for dark-matter candidate masses below 230-480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale $M_{*}$ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to $Z\gamma$ and the Z boson subsequently decays into neutrinos.

24 data tables

Observed event yields in 36.1 fb$^{-1}$ of data compared to expected yields from SM backgrounds in all signal regions, as predicted from the simultaneous fit to their respective CRs. The first three lines report the yields obtained from the inclusive-SR fit, while the two last lines report the yields obtained from the multiple-bin fit. The uncertainty includes both the statistical and systematic uncertainties.

The observed 95% CL exclusion contour for a simplified model of dark-matter production involving an axial-vector operator, Dirac DM and couplings $g_{q}$ = 0.25, $g_{\chi}$ = 1 and $g_{l}$ = 0 as a function of the dark-matter mass $m_{\chi}$ and the mediator mass $m_{\mathrm{med}}$. The plane under the limit curve is excluded.

The expected 95% CL exclusion contour (+1$\sigma$) for a simplified model of dark-matter production involving an axial-vector operator, Dirac DM and couplings $g_{q}$ = 0.25, $g_{\chi}$ = 1 and $g_{l}$ = 0 as a function of the dark-matter mass $m_{\chi}$ and the mediator mass $m_{\mathrm{med}}$. The plane under the limit curve is excluded.

More…