Cross section and complete set of proton spin observables in p polarized d elastic scattering at 250 MeV

Hatanaka, K. ; Shimizu, Y. ; Hirooka, D. ; et al.
Phys.Rev.C 66 (2002) 044002, 2002.
Inspire Record 599502 DOI 10.17182/hepdata.25292

The angular distributions of the cross section, the proton analyzing power, and all proton polarization transfer coefficients of p→d elastic scattering were measured at 250 MeV. The range of center-of-mass angles was 10°–165° for the cross section and the analyzing power, and about 10°–95° for the polarization transfer coefficients. These are the first measurements of a complete set of proton polarization observables for p→d elastic scattering at intermediate energies. The present data are compared with theoretical predictions based on exact solutions of the three-nucleon Faddeev equations and modern realistic nucleon-nucleon potentials combined with three-nucleon forces (3NF), namely, the Tucson-Melbourne (TM) 2π-exchange model, a modification thereof (TM′) closer to chiral symmetry, and the Urbana IX model. Large effects of the three-nucleon forces are predicted. The inclusion of the three-nucleon forces gives a good description of the cross section at angles below the minimum. However, appreciable discrepancies between the data and predictions remain at backward angles. For the spin observables the predictions of the TM 3NF model deviate strongly from the other two 3NF models, which are close together, except for Kyy′. In the case of the analyzing power all 3NF models fail to describe the data at the upper half of the angular range. In the restricted measured angular range the polarization transfer coefficients are fairly well described by the TM′ and Urbana IX 3NF models, whereas the TM 3NF model mostly fails. The transfer coefficient Kyy′ is best described by the Urbana IX but the theoretical description is still insufficient to reproduce the experimental data. These results call for a better understanding of the spin structure of the three-nucleon force and very likely for a full relativistic treatment of the three-nucleon continuum.

2 data tables

Cross section and analyzing power measurements.

Proton polarization transfer coefficients.


Proton proton elastic scattering excitation functions at intermediate energies.

The EDDA collaboration Rohdjess, H. ;
341-342, 1997.
Inspire Record 455527 DOI 10.17182/hepdata.25697

Polarized and unpolarized proton-proton elastic scattering is investigated with the EDDA-experiment at the Cooler Synchrotron COSY at Jülich to significantly improve the world data base in the beam energy range 500–2500 MeV. Measurements during beam acceleration with thin internal targets and a large acceptance detector provide excitation functions over a broad angular and energy range with unprecedented internal consistency. Data taking with an unpolarized CH2 fiber target and an unpolarized beam have been completed and the derived differential cross sections are presented and compared to a recent phase shift analysis. With a polarized atomic beam target newly installed in COSY and a polarized COSY beam—currently under development—the measurements will be extended to analyzing powers and spin correlation parameters.

6 data tables

No description provided.

Data from Rohdjess dissertation.

No description provided.

More…

Inclusive quasielastic spin observables for p (polarized) + H-2, C-12 at 500-MeV

Barlett, M.L. ; Fergerson, R.W. ; Hoffmann, G.W. ; et al.
Phys.Lett.B 264 (1991) 21-25, 1991.
Inspire Record 323310 DOI 10.17182/hepdata.29384

Analyzing powers ( A y ) and spin-rotation-depolarization parameters ( D SS , D SL , D LS , D LL , D NN ) were determined for 500 MeV p + 2 H and p + 12 C inclusive quasielastic scattering at 10°, 15°, and 20° laboratory scattering angles. The p + 2 H data are consistent with the isospin-average of the proton-proton and proton-neutron scattering observables; the p + 12 C data are not. A relativistic plane wave impulse approximation calculation leads to better agreement with the p + 12 C spin-observables.

2 data tables

Inclusive quasielastic p deut measurements.

Inclusive quasielastic p c measurements.


MEASUREMENT OF ANALYZING POWER IN FORWARD ANGLE FOR ELASTIC p d SCATTERING AT 3.5-GeV

Ohmori, C. ; Horikawa, N. ; Ishida, Y. ; et al.
Phys.Lett.B 230 (1989) 27-30, 1989.
Inspire Record 277083 DOI 10.17182/hepdata.29770

The analyzing power for elastic pd scattering at 3.5 GeV has been measured in the region 0.1⩽−t⩽1.5 (GeV/ c ) 2 , using the polarized proton beam at KEK. The angular distribution shows a behavior similar to that in the lower energy region. It is reproduced fairly well by the predictions of a multiple scattering model based on the Glauber theory.

1 data table

No description provided.


ELASTIC PROTON DEUTERON BACKWARD SCATTERING AT ENERGIES FROM 0.6-GEV TO 2.7-GEV

Berthet, P. ; Frascaria, R. ; Combes, M.P. ; et al.
J.Phys.G 8 (1982) L111-L116, 1982.
Inspire Record 182842 DOI 10.17182/hepdata.38562

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

Proton - Deuteron Elastic Scattering From 20-{GeV} to 210-{GeV}

Warren, G. ; Gross, D. ; Olsen, S.L. ; et al.
Nucl.Phys.B 207 (1982) 365-373, 1982.
Inspire Record 11268 DOI 10.17182/hepdata.34079

Measurements of the differential cross section for proton-deuteron elastic scattering are reported for incident proton momenta ranging from 20 to 210 GeV and for invariant four-momentum transfers of 0.6 ≤ − t ≤ 3.0 GeV 2 . The results are in disagreement with a very simple Glauber double scattering model calculation.

1 data table

Axis error includes +- 5/5 contribution (ERROR IN RECONSTRUCTION EFFICIENCY AND ACCEPTANCE CALCULATION).


Inelastic Intermediate States in Proton - Deuteron and Deuteron-deuteron Elastic Collisions at the {ISR}

Goggi, G. ; Cavalli-Sforza, M. ; Conta, C. ; et al.
Nucl.Phys.B 149 (1979) 381-412, 1979.
Inspire Record 132848 DOI 10.17182/hepdata.34818

We present experimental results on proton-deuteron and deuteron-deuteron elastic scattering measured at the two highest ISR energies, √ s = 53 GeV and √ s = 63 GeV. The data cover the single- and multiple-scattering regions over a wide interval of four-momentum transfer t . In both reactions we find clear evidence for a substantial t -dependent contribution of inelastic intermediate states in the multiple-scattering region, as well as in single scattering. In the analysis we use the Glauber multiple-scattering theory extended to include inelastic shadow effects. This extension of the basic theory contains as input a triple-Regge parametrization describing the high-mass inclusive spectrum. The analysis of inelastic corrections to multiple scattering on deuterons at high energies is shown to provide a sensitive test of different parametrization of inclusive production in proton-proton collisions.

1 data table

AT SQRT(S) OF 53 AND 63 GEV.


Evidence for Inelastic Propagators in Proton - Deuteron Elastic Scattering at $\sqrt{s}=63$-{GeV}

Goggi, G. ; Cavalli-Sforza, M. ; Conta, C. ; et al.
Phys.Lett.B 77 (1978) 428-432, 1978.
Inspire Record 130825 DOI 10.17182/hepdata.27425

We report on experimental results on proton-deuteron elastic scattering at a centre-of-mass energy of √ s = 63 GeV . The data were obtained using the Split Field Magnet detector at the CERN Intersecting Storage Rings. The t -dependence of the elastic differential cross section, measured up to − t = 2.0 GeV 2 , is compared with the prediction of an extended Glauber theory including contributions from inelastic intermediate states. Discrepancies of up to 30% with the basic theory are observed in the interference region. The inelastic contributions are essential for the detailed description of the data both in the single- and double-scattering regions.

2 data tables

No description provided.

No description provided.


The Real Part of the p-p and p-d Forward Scattering Amplitudes from 50 GeV to 400 GeV

Jenkins, E. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 41 (1978) 217, 1978.
Inspire Record 130086 DOI 10.17182/hepdata.11248

Proton-proton and proton-deuteron elastic scattering has been measured for incident laboratory energy from 50 to 400 GeV; minimum |t| values were, for p−p, 0.0005 (GeV/c)2, and for p−d, 0.0008 (GeV/c)2. From the differential cross sections we have determined the ratios of the real to imaginary parts of the forward scattering amplitude, ρpp and ρpd, for p−p and p−d scattering. Using a Glauber approach and a sum-of-exponentials form factor we obtain ρpn for p−n scattering.

18 data tables

No description provided.

No description provided.

FROM GLAUBER ANALYSIS. THE SYSTEMATIC ERRORS DUE TO THE UNCERTAINTY IN THE DEUTERON FORM FACTOR ARE COMPARABLE WITH THE STATISTICAL ERRORS.

More…

Proton - Deuteron Elastic Scattering at Small Momentum Transfer from 50-GeV/c to 400-GeV/c

Akimov, Y. ; Golovanov, L. ; Mukhin, S. ; et al.
Phys.Rev.D 12 (1975) 3399, 1975.
Inspire Record 99829 DOI 10.17182/hepdata.24883

Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.

11 data tables
More…