Showing 10 of 13 results
A search for pair production of the supersymmetric partners of the Higgs boson (higgsinos $\tilde{H}$) in gauge-mediated scenarios is reported. Each higgsino is assumed to decay to a Higgs boson and a gravitino. Two complementary analyses, targeting high- and low-mass signals, are performed to maximize sensitivity. The two analyses utilize LHC $pp$ collision data at a center-of-mass energy $\sqrt{s} = 13$ TeV, the former with an integrated luminosity of 36.1 fb$^{-1}$ and the latter with 24.3 fb$^{-1}$, collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing missing transverse momentum and several energetic jets, at least three of which must be identified as $b$-quark jets. No significant excess is found above the predicted background. Limits on the cross-section are set as a function of the mass of the $\tilde{H}$ in simplified models assuming production via mass-degenerate higgsinos decaying to a Higgs boson and a gravitino. Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level. Interpretations of the limits in terms of the branching ratio of the higgsino to a $Z$ boson or a Higgs boson are also presented, and a 45% branching ratio to a Higgs boson is excluded for $m_{\tilde{H}} \approx 400$ GeV.
Distribution of m(h1) for events passing the preselection criteria of the high-mass analysis.
Distribution of effective mass for events passing the preselection criteria of the high-mass analysis.
Exclusion limits on higgsino pair production. The results of the low-mass analysis are used below m(higgsino) = 300 GeV, while those of the high-mass analysis are used above. The figure shows the observed and expected 95% upper limits on the higgsino pair production cross-section as a function of m(higgsino).
Exclusion limits on higgsino pair production divided by the theory cross-section.The results of the low-mass analysis are used below m(higgsino) = 300 GeV, while those of the high-mass analysis are used above. The figure shows the observed and expected 95% upper limits on the higgsino pair production cross-section as a function of m(higgsino).
Observed and expected 95% limits in the m(higgsino) vs BR(higgsino to higgs+gravitino) plane. The regions above the lines are excluded by the analyses.
The observed and expected 95% upper limits on the total pair production cross section for degenerate higgsinos as a function of m(higgsino) for the high-mass search. Only the high-mass analysis results are used in this figure.
The observed and expected 95% upper limits on the total pair production cross section for degenerate higgsinos as a function of m(higgsino) for the high-mass search, divided by the theory cross section. Only the high-mass analysis results are used in this figure.
The observed and expected 95% upper limits on the total pair production cross section for degenerate higgsinos as a function of m(higgsino) for the low-mass search. Only the low-mass analysis results are used in this figure.
The observed and expected 95% upper limits on the total pair production cross section for degenerate higgsinos as a function of m(higgsino) for the low-mass search, divided by the theory cross section. Only the low-mass analysis results are used in this figure.
Particle-level acceptance for the low-mass discovery signal regions low-SR-MET0-meff440 and low-SR-MET150-meff440, shown as a function of higgsino mass. The acceptance is defined as the fraction of signal events passing the particle-level event selection that emulates the detector-level selection. The acceptance calculation considers only those signal events where both higgsinos decay to Higgs bosons that subsequently both decay to b-quarks.
The experimental efficiency of the low-mass analysis, for the two discovery signal regions low-SR-MET0-meff440 and low-SR-MET150-meff440, as a function of higgsino mass. The experimental efficiency is defined as the number of events passing the detector-level event selection divided by the number of events passing the event selection for a perfect detector. The denominator is obtained by implementing particle-level event selection that emulate the detector-level selection. Such particle-level selection is not applied on the numerator.
Particle-level acceptance for the high-mass discovery signal regions SR-4b-meff1-A-disc and SR-3b-meff3-A, shown as a function of higgsino mass. The acceptance is defined as the fraction of signal events passing the particle-level event selection that emulates the detector-level selection. The acceptance calculation considers only those signal events where both higgsinos decay to Higgs bosons that subsequently both decay to b-quarks.
The experimental efficiency of the high-mass analysis, for the two discovery signal regions SR-4b-meff1-A-disc and SR-3b-meff3-A, as a function of higgsino mass. The experimental efficiency is defined as the number of events passing the detector-level event selection divided by the number of events passing the event selection for a perfect detector. The denominator is obtained by implementing particle-level event selection that emulate the detector-level selection. Such particle-level selection is not applied on the numerator.
Example cutflow for SR-3b-meff3-A.
Example cutflow for SR-4b-meff1-A-disc.
Cutflow for low-mass analysis for each signal mass point.
A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model-independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks ($R$-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived $R$-hadrons as well as directly pair-produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop $R$-hadrons, as well as staus and charginos of 2000 GeV, 1250 GeV, 1340 GeV, 430 GeV and 1090 GeV, respectively.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>
Lower mass requirement for signal regions.
Lower mass requirement for signal regions.
Lower mass requirement for signal regions.
Lower mass requirement for signal regions.
Expected and observed events in the 16 discovery regions along with the according control regions.
Expected and observed events in the 16 discovery regions along with the according control regions.
Expected signal yield and acceptance x efficiency, estimated background and observed number of events in data for the full range of simulated masses in the MS-agnostic R-hadron search.
Expected signal yield and acceptance x efficiency, estimated background and observed number of events in data for the full range of simulated masses in the MS-agnostic R-hadron search.
Expected signal yield and acceptance x efficiency, estimated background and observed number of events in data for the full range of simulated masses in the full-detector R-hadron search.
Expected signal yield and acceptance x efficiency, estimated background and observed number of events in data for the full range of simulated masses in the full-detector R-hadron search.
p0-values and model-independent upper limits on cross-section x acceptance x efficiency for the 16 discovery regions.
p0-values and model-independent upper limits on cross-section x acceptance x efficiency for the 16 discovery regions.
Expected signal yield and acceptance x efficiency, estimated background and observed number of events in data for the full range of simulated masses in the MS-agnostic search for metastable gluino R-hadrons.
Expected signal yield and acceptance x efficiency, estimated background and observed number of events in data for the full range of simulated masses in the MS-agnostic search for metastable gluino R-hadrons.
Expected signal yield and acceptance x efficiency, estimated background and observed number of events in data for the full range of simulated masses in the full-detector direct-stau search.
Expected signal yield and acceptance x efficiency, estimated background and observed number of events in data for the full range of simulated masses in the full-detector direct-stau search.
Expected signal yield and acceptance x efficiency, estimated background and observed number of events in data for the full range of simulated masses in the full-detector chargino search.
Expected signal yield and acceptance x efficiency, estimated background and observed number of events in data for the full range of simulated masses in the full-detector chargino search.
Upper cross-section limit in gluino R-hadron search.
Upper cross-section limit in gluino R-hadron search.
Upper cross-section limit in sbottom R-hadron search.
Upper cross-section limit in sbottom R-hadron search.
Upper cross-section limit in stop R-hadron search.
Upper cross-section limit in stop R-hadron search.
Upper cross-section limit in stau search.
Upper cross-section limit in stau search.
Upper cross-section limit in chargino search.
Upper cross-section limit in chargino search.
Lower mass limit as function of gluino lifetime.
Lower mass limit as function of gluino lifetime.
Acceptance x efficiency, acceptance and efficiency for the full range of simulated masses in the MS-agnostic R-hadron search.
Acceptance x efficiency, acceptance and efficiency for the full range of simulated masses in the MS-agnostic R-hadron search.
Upper cross-section limit in meta-stable gluino R-hadron search.
Upper cross-section limit in meta-stable gluino R-hadron search.
Flavor composition of 800 GeV stop R-hadrons simulated using the generic model as a function of radial distance from the interaction point.
Flavor composition of 800 GeV stop R-hadrons simulated using the generic model as a function of radial distance from the interaction point.
Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model as a function of radial distance from the interaction point.
Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model as a function of radial distance from the interaction point.
Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model as a function of radial distance from the interaction point.
Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model as a function of radial distance from the interaction point.
Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model as a function of radial distance from the interaction point.
Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model as a function of radial distance from the interaction point.
ETmiss trigger efficiency as function of true ETmiss (EtmissTurnOn).
ETmiss trigger efficiency as function of true ETmiss (EtmissTurnOn).
Single-muon trigger efficiency as function of $|\eta|$ and $\beta$ (SingleMuTurnOn).
Single-muon trigger efficiency as function of $|\eta|$ and $\beta$ (SingleMuTurnOn).
Candidate reconstruction efficiency for ID+Calo selection (IDCaloEff).
Candidate reconstruction efficiency for ID+Calo selection (IDCaloEff).
Candidate reconstruction efficiency for loose selection (LooseEff).
Candidate reconstruction efficiency for loose selection (LooseEff).
Efficiency for a loose candidate to be promoted to a tight candidate (TightPromotionEff).
Efficiency for a loose candidate to be promoted to a tight candidate (TightPromotionEff).
Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates.
Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates.
Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates.
Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates.
Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates.
Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates.
A search for long-lived, massive particles predicted by many theories beyond the Standard Model is presented. The search targets final states with large missing transverse momentum and at least one high-mass displaced vertex with five or more tracks, and uses 32.8 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC. The observed yield is consistent with the expected background. The results are used to extract 95\% CL exclusion limits on the production of long-lived gluinos with masses up to 2.37 TeV and lifetimes of $\mathcal{O}(10^{-2})$-$\mathcal{O}(10)$ ns in a simplified model inspired by Split Supersymmetry.
Vertex reconstruction efficiency as a function of radial position $R$ with and without the special LRT processing for one $R$-hadron signal sample with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and $\tau_{\tilde{g}} = 1$ ns. The efficiency is defined as the probability for a true LLP decay to be matched with a reconstructed DV fulfilling the vertex preselection criteria in events with a reconstructed primary vertex.
Vertex reconstruction efficiency as a function of radial position $R$ for two $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $\tau_{\tilde{g}} = 1$ ns and different neutralino masses. The efficiency is defined as the probability for a true LLP decay to be matched with a reconstructed DV fulfilling the vertex preselection criteria in events with a reconstructed primary vertex.
Fractions of selected events for several signal MC samples with a gluino lifetime $\tau = 1$ ns, illustrating how $\mathcal{A}\times\varepsilon$ varies with the model parameters.
Fractions of selected events for several signal MC samples with a mass difference $\Delta m = 100$ GeV, illustrating how $\mathcal{A}\times\varepsilon$ varies with the model parameters.
Two-dimensional distribution of $m_{\mathrm{DV}}$ and track multiplicity for DVs in data events and events of a $R$-hadron signal sample with $m_{\tilde{g}} = 1.4$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and $\tau_{\tilde{g}} = 1$ ns that satisfy all signal region event selection criteria.
Two-dimensional distribution of $m_{\mathrm{DV}}$ and track multiplicity for DVs in data events and events of a $R$-hadron signal sample with $m_{\tilde{g}} = 1.4$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 1.32$ TeV and $\tau_{\tilde{g}} = 1$ ns that satisfy all signal region event selection criteria.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=1.4$ TeV and fixed $m_{\tilde{\chi}_{1}^{0}}=100$ GeV as a function of lifetime $\tau$.
Observed cross section upper 95% CL limits as a function of $m_{\tilde{g}}$ and $\tau$ for $m_{\tilde{\chi}_{1}^{0}}=100$ GeV. For the mass limits see the entry of Figure 8b.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=2.0$ TeV and fixed $m_{\tilde{\chi}_{1}^{0}}=100$ GeV as a function of lifetime $\tau$.
Vertex reconstruction efficiency as a function of radial position $R$ with and without the special LRT processing for one $R$-hadron signal sample with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and $\tau_{\tilde{g}} = 1$ ns. The efficiency is defined as the probability for a true LLP decay to be matched with a reconstructed DV fulfilling the vertex preselection criteria in events with a reconstructed primary vertex.
Lower 95% CL limits on $m_{\tilde{g}}$ for fixed $m_{\tilde{\chi}_{1}^{0}}=100$ GeV as a function of lifetime $\tau$.
Vertex reconstruction efficiency as a function of radial position $R$ for two $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $\tau_{\tilde{g}} = 1$ ns and different neutralino masses. The efficiency is defined as the probability for a true LLP decay to be matched with a reconstructed DV fulfilling the vertex preselection criteria in events with a reconstructed primary vertex.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=1.4$ TeV and fixed $\Delta m=100$ GeV as a function of lifetime $\tau$.
Fractions of selected events for several signal MC samples with a gluino lifetime $\tau = 1$ ns, illustrating how $\mathcal{A}\times\varepsilon$ varies with the model parameters.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=2.0$ TeV and fixed $\Delta m=100$ GeV as a function of lifetime $\tau$.
Fractions of selected events for several signal MC samples with a mass difference $\Delta m = 100$ GeV, illustrating how $\mathcal{A}\times\varepsilon$ varies with the model parameters.
Lower 95% CL limit on $m_{\tilde{g}}$ for fixed $\Delta m=100$ GeV as a function of lifetime $\tau$.
Two-dimensional distribution of $m_{\mathrm{DV}}$ and track multiplicity for DVs in data events and events of a $R$-hadron signal sample with $m_{\tilde{g}} = 1.4$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and $\tau_{\tilde{g}} = 1$ ns that satisfy all signal region event selection criteria.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=1.4$ TeV and fixed $\tau=1$ ns as a function of $m_{\tilde{\chi}_{1}^{0}}$.
Two-dimensional distribution of $m_{\mathrm{DV}}$ and track multiplicity for DVs in data events and events of a $R$-hadron signal sample with $m_{\tilde{g}} = 1.4$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 1.32$ TeV and $\tau_{\tilde{g}} = 1$ ns that satisfy all signal region event selection criteria.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=2.0$ TeV and fixed $\tau=1$ ns as a function of $m_{\tilde{\chi}_{1}^{0}}$.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=1.4$ TeV and fixed $\Delta m=100$ GeV as a function of lifetime $\tau$.
Observed 95% CL limit as a function of $m_{\tilde{g}}$ and $m_{\tilde{\chi}_{1}^{0}}$ for fixed $\tau=1$ ns.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=2.0$ TeV and fixed $\Delta m=100$ GeV as a function of lifetime $\tau$.
Two-dimensional distributions of $x$-$y$ positions of vertices observed in the data passing the vertex pre-selection and satisfying all signal region event-level requirements.
Lower 95% CL limit on $m_{\tilde{g}}$ for fixed $\Delta m=100$ GeV as a function of lifetime $\tau$.
Distribution of the mass $m_{\mathrm{DV}}$ for vertices in data events and in events of five $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and different $\tau_{\tilde{g}}$ that satisfy the signal region event requirements. All DV selections are applied except for the $m_{\mathrm{DV}}$ and track multiplicity requirements.
Two-dimensional distributions of $x$-$y$ positions of vertices observed in the data passing the vertex pre-selection and satisfying all signal region event-level requirements.
Distribution of the track multiplicity $n_{\mathrm{Tracks}}$ for vertices in data events and events of five $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and and different $\tau_{\tilde{g}}$ that satisfy the signal region event requirements. All DV selections are applied except for the $m_{\mathrm{DV}}$ and track multiplicity requirements. The track multiplicity distribution requires vertices to have $m_{\mathrm{DV}}>3$ GeV.
Distribution of the mass $m_{\mathrm{DV}}$ for vertices in data events and in events of five $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and different $\tau_{\tilde{g}}$ that satisfy the signal region event requirements. All DV selections are applied except for the $m_{\mathrm{DV}}$ and track multiplicity requirements.
Observed cross section upper 95% CL limits as a function of $m_{\tilde{g}}$ and $\tau$ for $m_{\tilde{\chi}_{1}^{0}}=100$ GeV. For the mass limits see the entry of Figure 8b.
Distribution of the track multiplicity $n_{\mathrm{Tracks}}$ for vertices in data events and events of five $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and and different $\tau_{\tilde{g}}$ that satisfy the signal region event requirements. All DV selections are applied except for the $m_{\mathrm{DV}}$ and track multiplicity requirements. The track multiplicity distribution requires vertices to have $m_{\mathrm{DV}}>3$ GeV.
Observed cross section upper 95% CL limits as a function of $m_{\tilde{g}}$ and $\tau$ for $\Delta m=100$ GeV. For the mass limits see the entry of Figure 9b.
Observed cross section upper 95% CL limits as a function of $m_{\tilde{g}}$ and $\tau$ for $\Delta m=100$ GeV. For the mass limits see the entry of Figure 9b.
Observed cross section upper 95% CL limits as a function of $m_{\tilde{\chi}_{1}^{0}}$ and $m_{\tilde{g}}$ for $\tau = 1$ ns. For the mass limits see the entry of Figure 10b.
Observed cross section upper 95% CL limits as a function of $m_{\tilde{\chi}_{1}^{0}}$ and $m_{\tilde{g}}$ for $\tau = 1$ ns. For the mass limits see the entry of Figure 10b.
Parameterized event selection efficiencies as a function of truth MET for events which have all truth decay vertices occurring before the start of the ATLAS calorimeter. Event-level efficiencies are evaluated for events that have truth MET $> 200$ GeV, pass the trackless jet requirement, and have at least one displaced truth decay within the fiducial volume. To satisfy the event-level efficiency, events must then pass the full event selection.
Parameterized event selection efficiencies as a function of truth MET for events which have all truth decay vertices occurring before the start of the ATLAS calorimeter. Event-level efficiencies are evaluated for events that have truth MET $> 200$ GeV, pass the trackless jet requirement, and have at least one displaced truth decay within the fiducial volume. To satisfy the event-level efficiency, events must then pass the full event selection.
Parameterized event selection efficiencies as a function of truth MET for events which have the furthest truth decay occurring inside the calorimeter. Event-level efficiencies are evaluated for events that have truth MET $> 200$ GeV, pass the trackless jet requirement, and have at least one displaced truth decay within the fiducial volume. To satisfy the event-level efficiency, events must then pass the full event selection.
Parameterized event selection efficiencies as a function of truth MET for events which have the furthest truth decay occurring inside the calorimeter. Event-level efficiencies are evaluated for events that have truth MET $> 200$ GeV, pass the trackless jet requirement, and have at least one displaced truth decay within the fiducial volume. To satisfy the event-level efficiency, events must then pass the full event selection.
Parameterized event selection efficiencies as a function of truth MET for events which have the furthest truth decay occurring after the end of the ATLAS calorimeter. Event-level efficiencies are evaluated for events that have truth MET $> 200$ GeV, pass the trackless jet requirement, and have at least one displaced truth decay within the fiducial volume. To satisfy the event-level efficiency, events must then pass the full event selection.
Parameterized event selection efficiencies as a function of truth MET for events which have the furthest truth decay occurring after the end of the ATLAS calorimeter. Event-level efficiencies are evaluated for events that have truth MET $> 200$ GeV, pass the trackless jet requirement, and have at least one displaced truth decay within the fiducial volume. To satisfy the event-level efficiency, events must then pass the full event selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $4$ mm $< R_{\mathrm{decay}} < 22$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $4$ mm $< R_{\mathrm{decay}} < 22$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $22$ mm $< R_{\mathrm{decay}} < 25$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $22$ mm $< R_{\mathrm{decay}} < 25$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $25$ mm $< R_{\mathrm{decay}} < 29$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $25$ mm $< R_{\mathrm{decay}} < 29$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $29$ mm $< R_{\mathrm{decay}} < 38$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=1.4$ TeV and fixed $m_{\tilde{\chi}_{1}^{0}}=100$ GeV as a function of lifetime $\tau$.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $29$ mm $< R_{\mathrm{decay}} < 38$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $38$ mm $< R_{\mathrm{decay}} < 46$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=2.0$ TeV and fixed $m_{\tilde{\chi}_{1}^{0}}=100$ GeV as a function of lifetime $\tau$.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $38$ mm $< R_{\mathrm{decay}} < 46$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $46$ mm $< R_{\mathrm{decay}} < 73$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Lower 95% CL limits on $m_{\tilde{g}}$ for fixed $m_{\tilde{\chi}_{1}^{0}}=100$ GeV as a function of lifetime $\tau$.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $46$ mm $< R_{\mathrm{decay}} < 73$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $73$ mm $< R_{\mathrm{decay}} < 84$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $73$ mm $< R_{\mathrm{decay}} < 84$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $84$ mm $< R_{\mathrm{decay}} < 111$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $84$ mm $< R_{\mathrm{decay}} < 111$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $111$ mm $< R_{\mathrm{decay}} < 120$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $111$ mm $< R_{\mathrm{decay}} < 120$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $120$ mm $< R_{\mathrm{decay}} < 145$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=1.4$ TeV and fixed $\tau=1$ ns as a function of $m_{\tilde{\chi}_{1}^{0}}$.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $120$ mm $< R_{\mathrm{decay}} < 145$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $145$ mm $< R_{\mathrm{decay}} < 180$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=2.0$ TeV and fixed $\tau=1$ ns as a function of $m_{\tilde{\chi}_{1}^{0}}$.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $145$ mm $< R_{\mathrm{decay}} < 180$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $180$ mm $< R_{\mathrm{decay}} < 300$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Observed 95% CL limit as a function of $m_{\tilde{g}}$ and $m_{\tilde{\chi}_{1}^{0}}$ for fixed $\tau=1$ ns.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $180$ mm $< R_{\mathrm{decay}} < 300$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
A search for pair production of a scalar partner of the top quark in events with four or more jets plus missing transverse momentum is presented. An analysis of 36.1 fb$^{-1}$ of $\sqrt{s}$=13 TeV proton-proton collisions collected using the ATLAS detector at the LHC yields no significant excess over the expected Standard Model background. To interpret the results a simplified supersymmetric model is used where the top squark is assumed to decay via $\tilde{t}_1 \rightarrow t^{(*)} \tilde\chi^0_1$ and $\tilde{t}_1\rightarrow b\tilde\chi^\pm_1 \rightarrow b W^{(*)} \tilde\chi^0_1$, where $\tilde\chi^0_1$ ($\chi^\pm_1$) denotes the lightest neutralino (chargino). Exclusion limits are placed in terms of the top-squark and neutralino masses. Assuming a branching ratio of 100% to $t \tilde\chi^0_1$, top-squark masses in the range 450-950 GeV are excluded for $\tilde\chi^0_1$ masses below 160 GeV. In the case where $m_{\tilde{t}_1}\sim m_t+m_{\tilde\chi^0_1}$, top-squark masses in the range 235-590 GeV are excluded.
Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T2}^{\chi^2}$ for SRA-T0 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T2}^{\chi^2}$ for SRA-T0 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T2}^{\chi^2}$ for SRA-T0 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T2}^{\chi^2}$ for SRA-T0 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T2}^{\chi^2}$ for SRA-T0 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T2}^{\chi^2}$ for SRA-T0 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T2}^{\chi^2}$ for SRA-T0 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRB-TW after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRB-TW after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRB-TW after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRB-TW after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRB-TW after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRB-TW after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRB-TW after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $R_\text{ISR}$ for SRC1-5 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $R_\text{ISR}$ for SRC1-5 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $R_\text{ISR}$ for SRC1-5 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $R_\text{ISR}$ for SRC1-5 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $R_\text{ISR}$ for SRC1-5 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $R_\text{ISR}$ for SRC1-5 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $R_\text{ISR}$ for SRC1-5 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRD-high after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRD-high after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRD-high after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRD-high after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRD-high after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRD-high after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRD-high after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $H_\text{T}$ for SRE after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $H_\text{T}$ for SRE after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $H_\text{T}$ for SRE after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $H_\text{T}$ for SRE after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $H_\text{T}$ for SRE after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $H_\text{T}$ for SRE after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $H_\text{T}$ for SRE after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Expected (blue solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Expected (blue solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Expected (blue solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Expected (blue solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Expected (blue solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Expected (blue solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Expected (blue solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Observed (red solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Observed (red solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Observed (red solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Observed (red solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Observed (red solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Observed (red solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Observed (red solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Expected exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Expected exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Expected exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Expected exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Expected exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Expected exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Observed exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Observed exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Observed exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Observed exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Observed exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Observed exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Observed exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Results of the exclusion fits for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ from the combination of SRA, SRB, SRC, SRD and SRE, based on the best expected $CL_s$. The numbers centered on the grid points indicate which of the signal regions gave the best expected $CL_s$ (with 1, 2, 3, 4, 5, 6 corresponding to SRA, SRB, SRC, SRD-low,SR D-high, SRE respectively).
Results of the exclusion fits for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ from the combination of SRA, SRB, SRC, SRD and SRE, based on the best expected $CL_s$. The numbers centered on the grid points indicate which of the signal regions gave the best expected $CL_s$ (with 1, 2, 3, 4, 5, 6 corresponding to SRA, SRB, SRC, SRD-low,SR D-high, SRE respectively).
Results of the exclusion fits for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ from the combination of SRA, SRB, SRC, SRD and SRE, based on the best expected $CL_s$. The numbers centered on the grid points indicate which of the signal regions gave the best expected $CL_s$ (with 1, 2, 3, 4, 5, 6 corresponding to SRA, SRB, SRC, SRD-low,SR D-high, SRE respectively).
Results of the exclusion fits for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ from the combination of SRA, SRB, SRC, SRD and SRE, based on the best expected $CL_s$. The numbers centered on the grid points indicate which of the signal regions gave the best expected $CL_s$ (with 1, 2, 3, 4, 5, 6 corresponding to SRA, SRB, SRC, SRD-low,SR D-high, SRE respectively).
Results of the exclusion fits for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ from the combination of SRA, SRB, SRC, SRD and SRE, based on the best expected $CL_s$. The numbers centered on the grid points indicate which of the signal regions gave the best expected $CL_s$ (with 1, 2, 3, 4, 5, 6 corresponding to SRA, SRB, SRC, SRD-low,SR D-high, SRE respectively).
Results of the exclusion fits for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ from the combination of SRA, SRB, SRC, SRD and SRE, based on the best expected $CL_s$. The numbers centered on the grid points indicate which of the signal regions gave the best expected $CL_s$ (with 1, 2, 3, 4, 5, 6 corresponding to SRA, SRB, SRC, SRD-low,SR D-high, SRE respectively).
Results of the exclusion fits for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ from the combination of SRA, SRB, SRC, SRD and SRE, based on the best expected $CL_s$. The numbers centered on the grid points indicate which of the signal regions gave the best expected $CL_s$ (with 1, 2, 3, 4, 5, 6 corresponding to SRA, SRB, SRC, SRD-low,SR D-high, SRE respectively).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 25%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 25%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 25%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 25%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 25%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 25%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 25%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 50%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 50%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 50%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 50%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 50%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 50%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 50%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0 (top left), 25% (top right), 50% (middle left), 75% middle right) and 100% (bottom). The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0 (top left), 25% (top right), 50% (middle left), 75% middle right) and 100% (bottom). The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0 (top left), 25% (top right), 50% (middle left), 75% middle right) and 100% (bottom). The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0 (top left), 25% (top right), 50% (middle left), 75% middle right) and 100% (bottom). The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0 (top left), 25% (top right), 50% (middle left), 75% middle right) and 100% (bottom). The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0 (top left), 25% (top right), 50% (middle left), 75% middle right) and 100% (bottom). The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0 (top left), 25% (top right), 50% (middle left), 75% middle right) and 100% (bottom). The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the wino NLSP grid for negative values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for negative values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for negative values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for negative values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for negative values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for negative values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for negative values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for positive values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for positive values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for positive values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for positive values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for positive values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for positive values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for positive values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{q3L}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{q3L}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{q3L}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{q3L}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{q3L}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{q3L}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{q3L}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{tR}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{tR}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{tR}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{tR}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{tR}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{tR}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{tR}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with large tan$\beta$ (top left) is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with large tan$\beta$ (top left) is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with large tan$\beta$ (top left) is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with large tan$\beta$ (top left) is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with large tan$\beta$ (top left) is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with large tan$\beta$ (top left) is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with large tan$\beta$ (top left) is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with small tan$\beta$ are shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with small tan$\beta$ are shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with small tan$\beta$ are shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with small tan$\beta$ are shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with small tan$\beta$ are shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with small tan$\beta$ are shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with small tan$\beta$ are shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenario with a mostly right-handed top squark partner is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenario with a mostly right-handed top squark partner is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenario with a mostly right-handed top squark partner is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenario with a mostly right-handed top squark partner is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenario with a mostly right-handed top squark partner is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenario with a mostly right-handed top squark partner is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenario with a mostly right-handed top squark partner is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Acceptance for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Acceptance for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Acceptance for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Acceptance for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Acceptance for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Acceptance for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Acceptance for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Efficiencies for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Efficiencies for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Efficiencies for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Efficiencies for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Efficiencies for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Efficiencies for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Efficiencies for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Upper limit cross-section, in femtobarn, for the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ grid.
Upper limit cross-section, in femtobarn, for the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ grid.
Upper limit cross-section, in femtobarn, for the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ grid.
Upper limit cross-section, in femtobarn, for the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ grid.
Upper limit cross-section, in femtobarn, for the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ grid.
Upper limit cross-section, in femtobarn, for the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ grid.
Upper limit cross-section, in femtobarn, for the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ grid.
Upper limit cross-section, in femtobarn, for the $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft grid.
Upper limit cross-section, in femtobarn, for the $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft grid.
Upper limit cross-section, in femtobarn, for the $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft grid.
Upper limit cross-section, in femtobarn, for the $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft grid.
Upper limit cross-section, in femtobarn, for the $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft grid.
Upper limit cross-section, in femtobarn, for the $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft grid.
Upper limit cross-section, in femtobarn, for the $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft grid.
Cutflow for SRA for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (800,1) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRA for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (800,1) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRA for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (800,1) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRA for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (800,1) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRA for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (800,1) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRA for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (800,1) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRA for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (800,1) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow SRB for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (600,300) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow SRB for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (600,300) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow SRB for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (600,300) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow SRB for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (600,300) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow SRB for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (600,300) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow SRB for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (600,300) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow SRB for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (600,300) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC1 and SRC2 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (250,77) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC1 and SRC2 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (250,77) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC1 and SRC2 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (250,77) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC1 and SRC2 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (250,77) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC1 and SRC2 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (250,77) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC1 and SRC2 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (250,77) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC1 and SRC2 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (250,77) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC3, SRC4, and SRC5 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (500,327) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC3, SRC4, and SRC5 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (500,327) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC3, SRC4, and SRC5 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (500,327) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC3, SRC4, and SRC5 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (500,327) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC3, SRC4, and SRC5 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (500,327) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC3, SRC4, and SRC5 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (500,327) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC3, SRC4, and SRC5 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (500,327) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-high for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV with $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (750,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-high for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV with $m(\tilde{t}_1,\tilde\chi^{\pm}_1)=$ (800,100) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-high for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV with $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (750,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-high for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV with $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (750,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-high for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV with $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (750,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-high for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV with $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (800,100) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-high for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV with $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (750,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-low for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV witht $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (400,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-low for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV witht $m(\tilde{t}_1,\tilde\chi^{\pm}_1)=$ (600,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-low for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV witht $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (400,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-low for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV witht $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (400,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-low for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV witht $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (400,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-low for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV witht $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (600,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-low for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV witht $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (400,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRE for a signal model with gluino pair production in the case where both gluinos decay via $\tilde{g}\to t\tilde{t}_1\to t\tilde\chi^0_1+$soft and $\Delta m(\tilde{t}_1, \tilde\chi^0_1)=5$ GeV with $m(\tilde{g},\tilde{t}_1)=$ (1700,400) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRE for a signal model with gluino pair production in the case where both gluinos decay via $\tilde{g}\to t\tilde{t}_1\to t\tilde\chi^0_1+$soft and $\Delta m(\tilde{t}_1, \tilde\chi^0_1)=5$ GeV with $m(\tilde{g},\tilde{t}_1)=$ (1700,400) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRE for a signal model with gluino pair production in the case where both gluinos decay via $\tilde{g}\to t\tilde{t}_1\to t\tilde\chi^0_1+$soft and $\Delta m(\tilde{t}_1, \tilde\chi^0_1)=5$ GeV with $m(\tilde{g},\tilde{t}_1)=$ (1700,400) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRE for a signal model with gluino pair production in the case where both gluinos decay via $\tilde{g}\to t\tilde{t}_1\to t\tilde\chi^0_1+$soft and $\Delta m(\tilde{t}_1, \tilde\chi^0_1)=5$ GeV with $m(\tilde{g},\tilde{t}_1)=$ (1700,400) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRE for a signal model with gluino pair production in the case where both gluinos decay via $\tilde{g}\to t\tilde{t}_1\to t\tilde\chi^0_1+$soft and $\Delta m(\tilde{t}_1, \tilde\chi^0_1)=5$ GeV with $m(\tilde{g},\tilde{t}_1)=$ (1700,400) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRE for a signal model with gluino pair production in the case where both gluinos decay via $\tilde{g}\to t\tilde{t}_1\to t\tilde\chi^0_1+$soft and $\Delta m(\tilde{t}_1, \tilde\chi^0_1)=5$ GeV with $m(\tilde{g},\tilde{t}_1)=$ (1700,400) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRE for a signal model with gluino pair production in the case where both gluinos decay via $\tilde{g}\to t\tilde{t}_1\to t\tilde\chi^0_1+$soft and $\Delta m(\tilde{t}_1, \tilde\chi^0_1)=5$ GeV with $m(\tilde{g},\tilde{t}_1)=$ (1700,400) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.
A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.
A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
Cutflow table for the slepton signal sample with $m(\tilde{\ell},\tilde{\chi}_1^0) = (100,70)$ GeV, in the SR-0J $m_{\mathrm{T2}}^{100} \in [100,\infty)$ region. The yields include the process cross section and are weighted to the 139 fb$^{-1}$ luminosity. 246000 events were generated for the sample.
Cutflow table for the slepton signal sample with $m(\tilde{\ell},\tilde{\chi}_1^0) = (100,70)$ GeV, in the SR-1J $m_{\mathrm{T2}}^{100} \in [100,\infty)$ region. The yields include the process cross section and are weighted to the 139 fb$^{-1}$ luminosity. 246000 events were generated for the sample.
Observed and expected exclusion limits on SUSY simplified models, with observed upper limits on signal cross-section (fb) overlaid, for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
The upper panel shows the observed number of events in each of the binned SRs defined in Table 3, together with the expected SM backgrounds obtained after applying the efficiency correction method to compute the number of expected FSB events. `Others' include the non-dominant background sources, e.g. $t \bar{t}$+$V$, Higgs boson and Drell--Yan events. The uncertainty band includes systematic and statistical errors from all sources. The distributions of two signal points with mass splittings $\Delta m(\tilde{\ell},\tilde{\chi}_1^0) = m(\tilde{\ell})-m(\tilde{\chi}_1^0) = 30$ GeV and $\Delta m(\tilde{\ell},\tilde{\chi}_1^0) = m(\tilde{\ell})-m(\tilde{\chi}_1^0) = 50$ GeV are overlaid. The lower panel shows the significance as defined in Ref. [115].
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,0.8125]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,0.8125]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8125,0.815]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8125,0.815]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.815,0.8175]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.815,0.8175]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8175,0.82]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8175,0.82]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,0.8225]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,0.8225]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8225,0.825]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8225,0.825]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.825,0.8275]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.825,0.8275]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8275,0.83]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8275,0.83]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,0.8325]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,0.8325]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8325,0.835]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8325,0.835]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.835,0.8375]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.835,0.8375]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8375,0.84]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8375,0.84]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,0.845]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,0.845]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.845,0.85]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.845,0.85]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,0.86]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,0.86]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.86,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.86,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,0.775]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,0.775]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.775,0.78]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.775,0.78]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,0.785]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,0.785]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.785,0.79]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.785,0.79]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,0.795]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,0.795]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.795,0.80]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.795,0.80]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,0.81]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,0.81]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
Cutflow table for the chargino signal sample with $m\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0=(125,25)$ GeV, in the SR-SF BDT-signal$\in (0.77,1]$ and SR-DF BDT-signal$\in (0.81,1]$ regions. The yields include the process cross-section and are weighted to the 139 fb$^{-1}$ luminosity. 170000 events were generated for the sample.
Observed and expected exclusion limits on SUSY simplified models, with observed upper limits on signal cross-section (fb) overlaid, for chargino-pair production with $W$-boson-mediated decays in the $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ plane. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the $WZ$+jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.
Observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Expected exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Expected exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRGGWZ-H.
N-1 distribution for $E_{\mathrm{T}}^{\mathrm{miss}}$of observed data and expected background in SRGGSlep-M.
N-1 distribution for $\sum{p_{\mathrm{T}}^\mathrm{jet}}$of observed data and expected background in SRUDD-ge2b.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRLQD.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRSSWZ-H.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRSSSlep-H(loose).
Signal acceptance for SRGGWZ-H signal region from Fig 10(c) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-H signal region from Fig 15(c) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGWZ-M signal region from Fig 10(b) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-M signal region from Fig 15(b) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGWZ-L signal region from Fig 10(a) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-L signal region from Fig 15(a) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-L signal region from Fig 12(a) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-L signal region from Fig 17(a) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-M signal region from Fig 12(b) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-M signal region from Fig 17(b) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-H signal region from Fig 12(c) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-H signal region from Fig 17(c) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRUDD-1b signal region from Fig 14(b) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-1b signal region from Fig 19(b) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-2b signal region from Fig 14(c) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-2b signal region from Fig 19(c) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-ge2b signal region from Fig 14(d) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-ge2b signal region from Fig 19(d) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-ge3b signal region from Fig 14(e) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-ge3b signal region from Fig 19(e) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRLQD signal region from Fig 14(a) in a SUSY scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Signal efficiency for SRLQD signal region from Fig 19(a) in a SUSY scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Signal acceptance for SRSSWZ-L signal region from Fig 11(a) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-L signal region from Fig 16(a) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-ML signal region from Fig 11(b) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-ML signal region from Fig 16(b) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-MH signal region from Fig 11(c) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-MH signal region from Fig 16(c) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-H signal region from Fig 11(d) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-H signal region from Fig 16(d) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-H signal region from Fig 13(d) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-H signal region from Fig 18(d) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-MH signal region from Fig 13(c) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-MH signal region from Fig 18(c) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-L signal region from Fig 13(a) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-L signal region from Fig 18(a) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-ML signal region from Fig 13(b) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-ML signal region from Fig 18(b) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-H(loose) signal region from Fig 13(e) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-H(loose) signal region from Fig 18(e) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-H in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-M in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-L in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-L in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-M in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-H in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-1b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-2b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-ge2b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-ge3b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRLQD in a susy scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2200 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1870 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-L in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-ML in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-MH in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-H in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-H in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-MH in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-L in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-ML in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-H(loose) in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Cross-section upper limits at 95% CL from Fig1(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Cross-section upper limits at 95% CL from Fig1(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Cross-section upper limits at 95% CL from Fig1(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using $139\,$fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13\,$TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or higgsino production decaying via Standard Model $W$, $Z$, or $h$ bosons are combined to extend the mass reach to the produced SUSY particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% CL cross-section upper limits by 15%-40%.
This paper presents a search for top-squark pair production in final states with a top quark, a charm quark and missing transverse momentum. The data were collected with the ATLAS detector during LHC Run 2 and corresponds to an integrated luminosity of 139fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. The analysis is motivated by an extended Minimal Supersymmetric Standard Model featuring a non-minimal flavour violation in the second- and third-generation squark sector. The top squark in this model has two possible decay modes, either $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ or $\tilde{t}_1\rightarrow t\tilde{\chi}_1^0$, where the $\tilde{\chi}_1^0$ is undetected. The analysis is optimised assuming that both of the decay modes are equally probable, leading to the most likely final state of $tc + E_{\text{T}}^{\text{miss}}$. Good agreement is found between the Standard Model expectation and the data in the search regions. Exclusion limits at 95% CL are obtained in the $m(\tilde{t}_1)$ vs $m(\tilde{\chi}_1^0)$ plane and, in addition, limits on the branching ratio of the $\tilde{t}_1\rightarrow t\tilde{\chi}_1^0$ decay as a function of $m(\tilde{t}_1)$ are also produced. Top-squark masses of up to 800 GeV are excluded for scenarios with light neutralinos, and top-squark masses up to 600 GeV are excluded in scenarios where the neutralino and the top squark are almost mass degenerate.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.