Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 048, 2019.
Inspire Record 1720442 DOI 10.17182/hepdata.84818

A measurement of the four-lepton invariant mass spectrum is made with the ATLAS detector, using an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider. The differential cross-section is measured for events containing two same-flavour opposite-sign lepton pairs. It exhibits a rich structure, with different mass regions dominated in the Standard Model by single $Z$ boson production, Higgs boson production, and $Z$ boson pair production, and non-negligible interference effects at high invariant masses. The measurement is compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. These calculations are used to interpret the data in terms of $gg\rightarrow ZZ \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ subprocesses, and to place constraints on a possible contribution from physics beyond the Standard Model.

0 data tables match query

Search for the dimuon decay of the Higgs boson in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 119 (2017) 051802, 2017.
Inspire Record 1599399 DOI 10.17182/hepdata.78379

A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the $pp$ collision data at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.

0 data tables match query

Searches for lepton-flavour-violating decays of the Higgs boson in $\sqrt{s}=13$ TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 800 (2020) 135069, 2020.
Inspire Record 1743838 DOI 10.17182/hepdata.96299

This Letter presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of $36.1\,\mathrm{fb}^{-1}$. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95 % confidence-level upper limits on the lepton-flavour-violating branching ratios are $0.47\%$ ($0.34^{+0.13}_{-0.10}\,\%$) and $0.28\%$ ($0.37^{+0.14}_{-0.10}\,\%$) for $H\to e\tau$ and $H\to\mu\tau$, respectively.

0 data tables match query

Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

0 data tables match query

A search for the $Z\gamma$ decay mode of the Higgs boson in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 809 (2020) 135754, 2020.
Inspire Record 1795890 DOI 10.17182/hepdata.94315

A search for the $Z\gamma$ decay of the Higgs boson, with $Z$ boson decays into pairs of electrons or muons is presented. The analysis uses proton$-$proton collision data at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS detector at the Large Hadron Collider. The observed data are consistent with the expected background with a $p$-value of 1.3%. An upper limit at 95% confidence level on the production cross-section times the branching ratio for $pp\to H\to Z\gamma$ is set at 3.6 times the Standard Model prediction while 2.6 times is expected in the presence of the Standard Model Higgs boson. The best-fit value for the signal yield normalised to the Standard Model prediction is $2.0^{+1.0}_{-0.9}$ where the statistical component of the uncertainty is dominant.

0 data tables match query

Version 2
Measurements of $WH$ and $ZH$ production in the $H \rightarrow b\bar{b}$ decay channel in $pp$ collisions at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 178, 2021.
Inspire Record 1805282 DOI 10.17182/hepdata.94800

Measurements of the Standard Model Higgs boson decaying into a $b\bar{b}$ pair and produced in association with a $W$ or $Z$ boson decaying into leptons, using proton-proton collision data collected between 2015 and 2018 by the ATLAS detector, are presented. The measurements use collisions produced by the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s} = $13 TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The production of a Higgs boson in association with a $W$ or $Z$ boson is established with observed (expected) significances of 4.0 (4.1) and 5.3 (5.1) standard deviations, respectively. Cross-sections of associated production of a Higgs boson decaying into bottom quark pairs with an electroweak gauge boson, $W$ or $Z$, decaying into leptons are measured as a function of the gauge boson transverse momentum in kinematic fiducial volumes. The cross-section measurements are all consistent with the Standard Model expectations, and the total uncertainties vary from 30% in the high gauge boson transverse momentum regions to 85% in the low regions. Limits are subsequently set on the parameters of an effective Lagrangian sensitive to modifications of the $WH$ and $ZH$ processes as well as the Higgs boson decay into $b\bar{b}$.

0 data tables match query

Search for pair production of higgsinos in final states with at least three $b$-tagged jets in $\sqrt{s} = 13$ TeV $pp$ collisions using the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 092002, 2018.
Inspire Record 1677389 DOI 10.17182/hepdata.83418

A search for pair production of the supersymmetric partners of the Higgs boson (higgsinos $\tilde{H}$) in gauge-mediated scenarios is reported. Each higgsino is assumed to decay to a Higgs boson and a gravitino. Two complementary analyses, targeting high- and low-mass signals, are performed to maximize sensitivity. The two analyses utilize LHC $pp$ collision data at a center-of-mass energy $\sqrt{s} = 13$ TeV, the former with an integrated luminosity of 36.1 fb$^{-1}$ and the latter with 24.3 fb$^{-1}$, collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing missing transverse momentum and several energetic jets, at least three of which must be identified as $b$-quark jets. No significant excess is found above the predicted background. Limits on the cross-section are set as a function of the mass of the $\tilde{H}$ in simplified models assuming production via mass-degenerate higgsinos decaying to a Higgs boson and a gravitino. Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level. Interpretations of the limits in terms of the branching ratio of the higgsino to a $Z$ boson or a Higgs boson are also presented, and a 45% branching ratio to a Higgs boson is excluded for $m_{\tilde{H}} \approx 400$ GeV.

0 data tables match query

Searches for heavy $ZZ$ and $ZW$ resonances in the $\ell\ell qq$ and $\nu\nu qq$ final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 03 (2018) 009, 2018.
Inspire Record 1620910 DOI 10.17182/hepdata.78550

This paper reports searches for heavy resonances decaying into $ZZ$ or $ZW$ using data from proton--proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 36.1 fb$^{-1}$, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The searches are performed in final states in which one $Z$ boson decays into either a pair of light charged leptons (electrons and muons) or a pair of neutrinos, and the associated $W$ boson or the other $Z$ boson decays hadronically. No evidence of the production of heavy resonances is observed. Upper bounds on the production cross sections of heavy resonances times their decay branching ratios to $ZZ$ or $ZW$ are derived in the mass range 300--5000 GeV within the context of Standard Model extensions with additional Higgs bosons, a heavy vector triplet or warped extra dimensions. Production through gluon--gluon fusion, Drell--Yan or vector-boson fusion are considered, depending on the assumed model.

0 data tables match query

Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a $Z$ boson in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 776 (2018) 318-337, 2018.
Inspire Record 1620909 DOI 10.17182/hepdata.80461

A search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a leptonically decaying $Z$ boson in proton--proton collisions at $\sqrt{s} =$ 13 TeV is presented. This search uses 36.1 fb$^{-1}$ of data collected by the ATLAS experiment at the Large Hadron Collider. No significant deviation from the expectation of the Standard Model backgrounds is observed. Assuming the Standard Model $ZH$ production cross-section, an observed (expected) upper limit of 67% (39%) at the 95% confidence level is set on the branching ratio of invisible decays of the Higgs boson with mass $m_H = $ 125 GeV. The corresponding limits on the production cross-section of the $ZH$ process with the invisible Higgs boson decays are also presented. Furthermore, exclusion limits on the dark matter candidate and mediator masses are reported in the framework of simplified dark matter models.

0 data tables match query

Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 055, 2018.
Inspire Record 1624690 DOI 10.17182/hepdata.78402

A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.

0 data tables match query