Underlying-event properties in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 023, 2023.
Inspire Record 2071174 DOI 10.17182/hepdata.133032

We report about the properties of the underlying event measured with ALICE at the LHC in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The event activity, quantified by charged-particle number and summed-$p_{\rm T}$ densities, is measured as a function of the leading-particle transverse momentum ($p_{\rm T}^{\rm trig}$). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different $p_{\rm T}$ thresholds (0.15, 0.5, and 1 GeV/$c$) at mid-pseudorapidity ($|\eta|<0.8$). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p$-$Pb collisions, namely, a steep increase with $p_{\rm T}^{\rm trig}$ for low $p_{\rm T}^{\rm trig}$, followed by a saturation at $p_{\rm T}^{\rm trig} \approx 5$ GeV/$c$. The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p$-$Pb collisions for $p_{\rm T}^{\rm trig}>10$ GeV/$c$, whereas for lower $p_{\rm T}^{\rm trig}$ values the event activity is slightly higher in p$-$Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators.

0 data tables match query

Production of pions, kaons and protons in pp collisions at sqrt(s)= 900 GeV with ALICE at the LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 71 (2011) 1655, 2011.
Inspire Record 885104 DOI 10.17182/hepdata.57568

The production of $\pi^+$, $\pi^-$, $K^+$, $K^-$, p, and pbar at mid-rapidity has been measured in proton-proton collisions at $\sqrt{s} = 900$ GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum ($p_{\rm T}$) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from $p_{\rm T}$ = 100 MeV/$c$ to 2.5 GeV/$c$. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean $p_{\rm T}$ are compared with previous measurements, and the trends as a function of collision energy are discussed.

0 data tables match query

Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at sqrt(s)=0.9, 2.76 and 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 72 (2012) 2124, 2012.
Inspire Record 1115186 DOI 10.17182/hepdata.58857

Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at $\sqrt{s}=0.9$, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with $p_{\rm T}\geq0.5$ GeV/c in $|\eta|\leq0.8$. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity ($N_{\rm ch}$) is reported for events with different $p_{\rm T}$ scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low $N_{\rm ch}$, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean $p_{\rm T}$ with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.

0 data tables match query

Transverse momentum spectra of charged particles in proton-proton collisions at $\sqrt{s} = 900$~GeV with ALICE at the LHC

The ALICE collaboration Aamodt, K ; Abel, N ; Abeysekara, U. ; et al.
Phys.Lett.B 693 (2010) 53-68, 2010.
Inspire Record 860416 DOI 10.17182/hepdata.56032

The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at $\sqrt{s} = 900$ GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region $(|\eta|<0.8)$ over the transverse momentum range $0.15<p_{\rm T}<10$ GeV/$c$. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for $|\eta|<0.8$ is $\left<p_{\rm T}\right>_{\rm INEL}=0.483\pm0.001$ (stat.) $\pm0.007$ (syst.) GeV/$c$ and $\left<p_{\rm T}\right>_{\rm NSD}=0.489\pm0.001$ (stat.) $\pm0.007$ (syst.) GeV/$c$, respectively. The data exhibit a slightly larger $\left<p_{\rm T}\right>$ than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.

0 data tables match query

K$^{*}$(892)$^{\pm}$ resonance production in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 109 (2024) 044902, 2024.
Inspire Record 2692205 DOI 10.17182/hepdata.150017

The production of K$^*$(892)$^\pm$ meson resonance is measured at midrapidity ($|y|<0.5$) in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV using the ALICE detector at the LHC. The resonance is reconstructed via its hadronic decay channel K$^*$(892)$^\pm \rightarrow \rm{K^0_S \pi^\pm}$. The transverse momentum distributions are obtained for various centrality intervals in the $p_{\rm T}$ range of 0.4-16 GeV/$c$. The reported measurements of integrated yields, mean transverse momenta, and particle yield ratios are consistent with previous ALICE measurements for K$^*$(892)$^0$. The $p_{\rm T}$-integrated yield ratio 2K$^*$(892)$^\pm$/($\rm{K^+ + K^-}$) in central Pb-Pb collisions shows a significant suppression (9.3$\sigma$) relative to pp collisions. Thermal model calculations overpredict the particle yield ratio. Although both simulations consider the hadronic phase, only HRG-PCE accurately represents the measurements, whereas MUSIC+SMASH tends to overpredict them. These observations, along with the kinetic freeze-out temperatures extracted from the yields of light-flavored hadrons using the HRG-PCE model, indicate a finite hadronic phase lifetime, which increases towards central collisions. The $p_{\rm T}$-differential yield ratios 2K$^*$(892)$^\pm$/($\rm{K^+ + K^-}$) and 2K$^*$(892)$^\pm$/($\rm{\pi^+ + \pi^-}$) are suppressed by up to a factor of five at $p_{\rm T}<2$ GeV/$c$ in central Pb-Pb collisions compared to pp collisions at $\sqrt{s} =$ 5.02 TeV. Both particle ratios and are qualitatively consistent with expectations for rescattering effects in the hadronic phase. The nuclear modification factor shows a smooth evolution with centrality and is below unity at $p_{\rm T}>8$ GeV/$c$, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium.

0 data tables match query