Showing 10 of 58 results
A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.
The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed and expected exclusion limit in the gluino-neutralino mass plane at 95% CL combined using the signal region with the best expected sensitivity at each point, for the full Run-2 dataset corresponding to an integrated luminosity of $139~\mathrm{fb}^{-1}$, for $\gamma/Z$ (a) and $\gamma/h$ (b) signal models. The black solid line corresponds to the expected limits at 95% CL, with the light (yellow) bands indicating the 1$\sigma$ exclusions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves, the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties. For each point in the higgsino-bino parameter space, the labels indicate the best-expected signal region, where L, M and H mean SRL, SRM and SRH, respectively.
Observed and expected exclusion limit in the gluino-neutralino mass plane at 95% CL combined using the signal region with the best expected sensitivity at each point, for the full Run-2 dataset corresponding to an integrated luminosity of $139~\mathrm{fb}^{-1}$, for $\gamma/Z$ (a) and $\gamma/h$ (b) signal models. The black solid line corresponds to the expected limits at 95% CL, with the light (yellow) bands indicating the 1$\sigma$ exclusions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves, the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties. For each point in the higgsino-bino parameter space, the labels indicate the best-expected signal region, where L, M and H mean SRL, SRM and SRH, respectively.
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Cutflow for the SRL selection, for two relevant signal points for both $\gamma/Z$ and $\gamma/h$ models, where the gluinos have mass of 2000 GeV and the neutralinos have a mass of 250 GeV (10000 generated events). The numbers are normalized to a luminosity of 139 $fb^{-1}$.
Cutflow for the SRM selection, for two relevant signal points for both $\gamma/Z$ and $\gamma/h$ models, where the gluinos have mass of 2000 GeV and the neutralinos have a mass of 1050 GeV (10000 generated events). The numbers are normalized to a luminosity of 139 $fb^{-1}$.
Cutflow for the SRH selection, for two relevant signal points for both $\gamma/Z$ and $\gamma/h$ models, where the gluinos have mass of 2000 GeV and the neutralinos have a mass of 1950 GeV (10000 generated events). The numbers are normalized to a luminosity of 139 $fb^{-1}$.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
This paper presents a measurement of fiducial and differential cross-sections for $W^{+}W^{-}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the `stransverse mass' variable $m_{\textrm{T2}}$, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct $W^{+}W^{-}$ production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.
Signal region detector-level distribution for the observable $|y_{e\mu}|$.
Signal region detector-level distribution for the observable $|\Delta \phi(e \mu)|$.
Signal region detector-level distribution for the observable $ \cos\theta^{\ast}$.
Signal region detector-level distribution for the observable $p_{\mathrm{T}}^{\mathrm{lead}\, \ell}$.
Signal region detector-level distribution for the observable $m_{e\mu}$.
Signal region detector-level distribution for the observable $p_{\mathrm{T}}^{e\mu}$.
Measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $|y_{e\mu}|$
Relative systematic uncertainties for the fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $|y_{e\mu}|$
Measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $|\Delta \phi(e \mu)|$
Relative systematic uncertainties for the fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $|\Delta \phi(e \mu)|$
Measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $ \cos\theta^{\ast}$
Relative systematic uncertainties for the fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $ \cos\theta^{\ast}$
Measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $p_{\mathrm{T}}^{\mathrm{lead}\, \ell}$
Relative systematic uncertainties for the fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $p_{\mathrm{T}}^{\mathrm{lead}\, \ell}$
Measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $m_{e\mu}$
Relative systematic uncertainties for the fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $m_{e\mu}$
Measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $p_{\mathrm{T}}^{e\mu}$
Relative systematic uncertainties for the fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $p_{\mathrm{T}}^{e\mu}$
The statistical correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $|y_{e\mu}|$
The total correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $|y_{e\mu}|$
The statistical correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $|\Delta \phi(e \mu)|$
The total correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $|\Delta \phi(e \mu)|$
The statistical correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $ \cos\theta^{\ast}$
The total correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $ \cos\theta^{\ast}$
The statistical correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $p_{\mathrm{T}}^{\mathrm{lead}\, \ell}$
The total correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $p_{\mathrm{T}}^{\mathrm{lead}\, \ell}$
The statistical correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $m_{e\mu}$
The total correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $m_{e\mu}$
The statistical correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $p_{\mathrm{T}}^{e\mu}$
The total correlation coefficients (in percentage) between bins for the measured fiducial differential cross-section of $WW \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ production for the observable $p_{\mathrm{T}}^{e\mu}$
A search for supersymmetry involving the pair production of gluinos decaying via off-shell third-generation squarks into the lightest neutralino ($\tilde\chi^0_1$) is reported. It exploits LHC proton$-$proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 139 fb$^{-1}$ collected with the ATLAS detector from 2015 to 2018. The search uses events containing large missing transverse momentum, up to one electron or muon, and several energetic jets, at least three of which must be identified as containing $b$-hadrons. Both a simple kinematic event selection and an event selection based upon a deep neural-network are used. No significant excess above the predicted background is found. In simplified models involving the pair production of gluinos that decay via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for a massless $\tilde\chi^0_1$. Limits are also set on the gluino mass in models with variable branching ratios for gluino decays to $b\bar{b}\tilde\chi^0_1$, $t\bar{t}\tilde\chi^0_1$ and $t\bar{b}\tilde\chi^-_1$ / $\bar{t}b\tilde\chi^+_1$.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-M2. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-M2. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-M2. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-M2. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-M. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-M. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-M. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-M. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-2100-1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-2100-1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1800-1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1800-1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-2300-1200. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-2300-1200. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1900-1400. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1900-1400. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2800-1400. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2800-1400. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2300-1000. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2300-1000. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2100-1600. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2100-1600. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2000-1800. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2000-1800. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
Results of the background-only fit extrapolated to SR_Gtt_0L_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_M1 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_M1 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_M2 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_M2 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_M1 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_M1 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_M2 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_M2 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_M in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_M in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_M in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_M in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_2100_1 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_2100_1 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1800_1 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1800_1 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_2300_1200 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_2300_1200 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1900_1400 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1900_1400 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2800_1400 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2800_1400 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2300_1000 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2300_1000 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2100_1600 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2100_1600 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2000_1800 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2000_1800 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~GeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~GeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~GeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~GeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 600$~GeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 600$~GeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 600$~GeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 600$~GeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~TeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~TeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~TeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~TeV, obtained from the CC analysis.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb (right) models obtained from the CC analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb (right) models obtained from the CC analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb (right) models obtained from the NN analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb (right) models obtained from the NN analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt (left) models obtained from the CC analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt (left) models obtained from the CC analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt (left) models obtained from the NN analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt (left) models obtained from the NN analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Acceptance for SR-Gtt-0L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-B and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-B and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-B and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-B and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-M and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-M and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-M and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-M and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-C and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-C and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-C and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-C and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-2100-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-2100-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-2100-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-2100-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1800-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1800-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1800-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1800-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-2300-1200 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-2300-1200 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-2300-1200 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-2300-1200 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1900-1400 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1900-1400 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1900-1400 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1900-1400 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2800-1400 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2800-1400 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2800-1400 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2800-1400 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2300-1000 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2300-1000 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2300-1000 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2300-1000 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2100-1600 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2100-1600 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2100-1600 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2100-1600 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2000-1800 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2000-1800 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2000-1800 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2000-1800 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Cutflow for the SR-Gtt-0L-B for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-B for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-M1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-M1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-M2 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-M2 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-C for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-C for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-B for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-B for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-M1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-M1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-M2 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-M2 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-C for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-C for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-B for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-B for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-M for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-M for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-C for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-C for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-B for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-B for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-M for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-M for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-C for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-C for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-2100-1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-2100-1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1800-1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1800-1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-2300-1200 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-2300-1200 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1900-1400 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1900-1400 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2800-1400 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2800-1400 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2300-1000 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2300-1000 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2100-1600 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2100-1600 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2000-1800 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2000-1800 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Searches for new phenomena inspired by supersymmetry in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and missing transverse momentum are presented. These searches make use of proton-proton collision data with an integrated luminosity of 139 $\text{fb}^{-1}$, collected during 2015-2018 at a centre-of-mass energy $\sqrt{s}=13 $TeV by the ATLAS detector at the Large Hadron Collider. Two searches target the pair production of charginos and neutralinos. One uses the recursive-jigsaw reconstruction technique to follow up on excesses observed in 36.1 $\text{fb}^{-1}$ of data, and the other uses conventional event variables. The third search targets pair production of coloured supersymmetric particles (squarks or gluinos) decaying through the next-to-lightest neutralino $(\tilde\chi_2^0)$ via a slepton $(\tilde\ell)$ or $Z$ boson into $\ell^+\ell^-\tilde\chi_1^0$, resulting in a kinematic endpoint or peak in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectations. Results are interpreted using simplified models and exclude masses up to 900 GeV for electroweakinos, 1550 GeV for squarks, and 2250 GeV for gluinos.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>EWK SR distributions:</b> <a href="116034?version=1&table=Figure 11a">SR-High_8-EWK</a>; <a href="116034?version=1&table=Figure 11b">SR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 11c">SR-Int-EWK</a>; <a href="116034?version=1&table=Figure 11d">SR-Low-EWK</a>; <a href="116034?version=1&table=Figure 11e">SR-OffShell-EWK</a><br/><br/> <b>Strong SR distributions:</b> <a href="116034?version=1&table=Figure 13a">SRC-STR</a>; <a href="116034?version=1&table=Figure 13b">SRLow-STR</a>; <a href="116034?version=1&table=Figure 13c">SRMed-STR</a>; <a href="116034?version=1&table=Figure 13d">SRHigh-STR</a><br/><br/> <b>RJR SR Yields:</b> <a href="116034?version=1&table=Table 16">SR2l-Low-RJR, SR2l-ISR-RJR</a><br/><br/> <b>EWK SR Yields:</b> <a href="116034?version=1&table=Table 18">SR-High_16a-EWK, SR-High_8a-EWK, SR-1J-High-EWK, SR-ℓℓ𝑏𝑏-EWK, SR-High_16b-EWK, SR-High_8b-EWK</a>; <a href="116034?version=1&table=Table 19">SR-Int_a-EWK, SR-Low_a-EWK, SR-Low-2-EWK, SR-OffShell_a-EWK, SR-Int_b-EWK, SR-Low_b-EWK, SR-OffShell_b-EWK </a><br/><br/> <b>Strong SR Yields:</b> <a href="116034?version=1&table=Table 21">SRC-STR, SRLow-STR, SRMed-STR, SRHigh-STR</a>; <a href="116034?version=1&table=Table 22">SRZLow-STR, SRZMed-STR, SRZHigh-STR</a><br/><br/> <b>C1N2 Model Limits:</b> <a href="116034?version=1&table=Table 15a C1N2 Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15a C1N2 Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34a C1N2 Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>GMSB Model Limits:</b> <a href="116034?version=1&table=Table 15b GMSB Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15b GMSB Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34b GMSB Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Slepton Model Limits:</b> <a href="116034?version=1&table=Figure 16a Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16a Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23a XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16b Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16b Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23b XS Upper Limit">Upper Limits</a><br/><br/> <b>Squark-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16c Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16c Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23c XS Upper Limit">Upper Limits</a><br/><br/> <b>EWK VR distributions:</b> <a href="116034?version=1&table=Figure 4a S_ETmiss in VR-High-Sideband-EWK">VR-High-Sideband-EWK</a>; <a href="116034?version=1&table=Figure 4b S_Etmiss in VR-High-R-EWK">VR-High-R-EWK</a>; <a href="116034?version=1&table=Figure 4c S_Etmiss in VR-1J-High-EWK">VR-1J-High-EWK</a>; <a href="116034?version=1&table=Figure 4d S_Etmiss in VR-llbb-EWK">VR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 5a S_Etmiss in VR-Int-EWK">VR-Int-EWK</a>; <a href="116034?version=1&table=Figure 5b S_Etmiss in VR-Low-EWK">VR-Low-EWK</a>; <a href="116034?version=1&table=Figure 5c S_Etmiss in VR-Low-2-EWK">VR-Low-2-EWK</a>; <a href="116034?version=1&table=Figure 5d S_Etmiss in VR-OffShell-EWK">VR-OffShell-EWK</a><br/><br/> <b>Strong VR distributions:</b> <a href="116034?version=1&table=Figure 6a">VRC-STR</a>; <a href="116034?version=1&table=Figure 6b">VRLow-STR</a>; <a href="116034?version=1&table=Figure 6c">VRMed-STR</a>; <a href="116034?version=1&table=Figure 6d">VRHigh-STR</a>; <a href="116034?version=1&table=Figure 8">VR3L-STR</a><br/><br/> <b>Other Strong distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 17a">SRLow-STR + VRLow-STR</a><br/><br/> <b>Other EWK distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 33a Mjj in CR-Z-EWK and SR-Low-EWK">CR-Z-EWK + SR-Low-EWK</a>; <a href="116034?version=1&table=Auxiliary Figure 33b S_ETmiss in CR-Z-met-EWK">CR-Z-met-EWK</a><br/><br/> <b>Strong Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 30-31 SRC-STR Cutflow">SRC-STR GG_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRMed-STR Cutflow">SRC-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRLow-STR Cutflow">SRLow-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRHigh-STR Cutflow">SRC-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZLow-STR Cutflow">SRZLow-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZMed-STR Cutflow">SRZMed-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZHigh-STR Cutflow">SRZHigh-STR SS_N2_ZN1</a><br/><br/> <b>EWK Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Cutflow"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Cutflow"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Cutflow"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Cutflow"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Cutflow"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Cutflow"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Cutflow"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Cutflow"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Cutflow"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Cutflow"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Cutflow"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Cutflow"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Cutflow"> SR-llbb-EWK</a><br/><br/> <b>EWK Signal Number of MC Events:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Generated"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Generated"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Generated"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Generated"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Generated"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Generated"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Generated"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Generated"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Generated"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Generated"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Generated"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Generated"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Generated"> SR-llbb-EWK</a><br/><br/> <b>SRC-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SRC-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SR-OffShell_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in C1N2 acc in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in C1N2 acc in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in C1N2 eff in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in C1N2 eff in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>Truth Code snippets</b>, <b>SLHA files</b>, and <b>PYHF json likelihoods</b> are available under "Resources" (purple button on the left) ---- Record created with hepdata_lib 0.7.0: https://zenodo.org/record/4946277 and PYHF: https://doi.org/10.5281/zenodo.1169739
Breakdown of expected and observed yields in the two recursive-jigsaw reconstruction signal regions after a simultaneous fit of the the CRs. The two sets of regions are fit separately. The uncertainties include both statistical and systematic sources.
Breakdown of expected and observed yields in the electroweak search High and $\ell\ell bb$ signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
Breakdown of expected and observed yields in the electroweak search Int, Low, and OffShell signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
Breakdown of expected and observed yields in the four edge signal regions, integrated over the $m_{\ell\ell}$ distribution after a separate simultaneous fit to each signal region and control region pair. The uncertainties include both the statistical and systematic sources.
Breakdown of expected and observed yields in the three on-$Z$ signal regions after a separate simultaneous fit to each signal region and control region pair. The uncertainties include both the statistical and systematic sources.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected dilepton mass distributions in VR3L-STR without a fit to the data. The 'Other' category includes the negligible contributions from $t\bar{t}$ and $Z/\gamma^*$+jets processes. The hatched band contains the statistical uncertainty and the theoretical systematic uncertainties of the $WZ$/$ZZ$ prediction, which are the dominant sources of uncertainty. No fit is performed. The last bin contains the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95\% CLs upper limit on the cross section.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95$\%$ CLs upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
The combined $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution of VRLow-STR and SRLow-STR (left), and the same region with the $\Delta\phi(\boldsymbol{j}_{1,2},\boldsymbol{\mathit{p}}_{ ext{T}}^{ ext{miss}})<0.4$ requirement, used as a control region to normalize the $Z/\gamma^*+\mathrm{jets}$ process (right). Separate fits for the SR and VR are performed, as for the results in the paper, and the resulting distributions are merged. All statistical and systematic uncertainties are included in the hatched bands. The last bins contain the overflow.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Table 36: Cutflow of expected events in the region SR-OffShell_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 36: Cutflow of expected events in the region SR-OffShell_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 37: Cutflow of expected events in the region SR-OffShell_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 37: Cutflow of expected events in the region SR-OffShell_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 38: Cutflow of expected events in the region SR-Low_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 38: Cutflow of expected events in the region SR-Low_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 39: Cutflow of expected events in the region SR-Low_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 39: Cutflow of expected events in the region SR-Low_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 40: Cutflow of expected events in the region SR-Low-2-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 40: Cutflow of expected events in the region SR-Low-2-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 41: Cutflow of expected events in the region SR-Int_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 41: Cutflow of expected events in the region SR-Int_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 42: Cutflow of expected events in the region SR-Int_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 42: Cutflow of expected events in the region SR-Int_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 43: Cutflow of expected events in the region SR-High_16a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 43: Cutflow of expected events in the region SR-High_16a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 44: Cutflow of expected events in the region SR-High_16b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 44: Cutflow of expected events in the region SR-High_16b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 45: Cutflow of expected events in the region SR-High_8a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 45: Cutflow of expected events in the region SR-High_8a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 46: Cutflow of expected events in the region SR-High_8b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 46: Cutflow of expected events in the region SR-High_8b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 47: Cutflow of expected events in the region SR-1J-High-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 47: Cutflow of expected events in the region SR-1J-High-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 48: Cutflow of expected events in the region SR-llbb-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 48: Cutflow of expected events in the region SR-llbb-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, ${\mathrm{d}}E/\mathrm{d}x$. Trajectories reconstructed solely by the inner tracking system and a ${\mathrm{d}}E/\mathrm{d}x$ measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to ${\cal O}(1)$$\text{ns}$ with a mass, measured using the Bethe--Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of $R$-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.
This material aims to give people outside the ATLAS Collaboration the possibility to reinterpret the results from the search for heavy charged long-lived particles (CLLPs), using only particles from Monte Carlo event generators. The reinterpretation material is provided for signal regions SR-Inclusive_Low and SR-Inclusive_High. <ul display="inline-block"> <li>The "long" lifetime regime of mass windows is used.</li> <li>Users are guided to read Guide.pdf (available from "Resources" or "Download All" buttons) for how to use the provided materials for reinterpretation.</li> <li>The pseudo-code snippet snippet.cxx also illustrates a sketch of possible implementation.</li> </ul> <b>Signal Region (Discovery) mass distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20mass%20distribution">SR-Inclusive_Low mass distribution</a></li> <li><a href="?table=SR-Inclusive_High%20mass%20distribution">SR-Inclusive_High mass distribution</a></li> </ul> <b>Signal Region (Discovery) $p_\text{T}, \eta, dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20pT%20distribution">SR-Inclusive_Low pT distribution</a></li> <li><a href="?table=SR-Inclusive_High%20pT%20distribution">SR-Inclusive_High pT distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20$eta$%20distribution">SR-Inclusive_Low $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_High%20$eta$%20distribution">SR-Inclusive_High $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20dE/dx%20distribution">SR-Inclusive_Low dE/dx distribution</a></li> <li><a href="?table=SR-Inclusive_High%20dE/dx%20distribution">SR-Inclusive_High dE/dx distribution</a></li> </ul> <b>Signal Region (Limit Setting) mass distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20mass%20distribution">SR-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20mass%20distribution">SR-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20mass%20distribution">SR-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20mass%20distribution">SR-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20mass%20distribution">SR-Trk-IBL1 mass distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20mass%20distribution">SR-Mu-IBL1 mass distribution</a></li> </ul> <b>Signal Region (Limit Setting) $p_\text{T}$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20pT%20distribution">SR-Trk-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20pT%20distribution">SR-Mu-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20pT%20distribution">SR-Trk-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20pT%20distribution">SR-Mu-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20pT%20distribution">SR-Trk-IBL1 pT distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20pT%20distribution">SR-Mu-IBL1 pT distribution</a></li> </ul> <b>Signal Region (Limit Setting) $dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20dE/dx%20distribution">SR-Trk-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20dE/dx%20distribution">SR-Mu-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20dE/dx%20distribution">SR-Trk-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20dE/dx%20distribution">SR-Mu-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20dE/dx%20distribution">SR-Trk-IBL1 dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20dE/dx%20distribution">SR-Mu-IBL1 dE/dx distribution</a></li> </ul> <b>Discovery Signal Regions $p_{0}$ values</b> <ul> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20short%20regime">p0-values and model-independent limits, short regime</a></li> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20long%20regime">p0-values and model-independent limits, long regime</a></li> </ul> <b>Validation Region plots</b> <ul> <li><a href="?table=VR-LowPt-Inclusive_High%20mass%20distribution">VR-LowPt-Inclusive_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Inclusive%20mass%20distribution">VR-HiEta-Inclusive mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-LowPt-Trk-IBL0_Low%20mass%20distribution">VR-LowPt-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_Low%20mass%20distribution">VR-LowPt-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL0_High%20mass%20distribution">VR-LowPt-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_High%20mass%20distribution">VR-LowPt-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL1%20mass%20distribution">VR-LowPt-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL1%20mass%20distribution">VR-LowPt-Mu-IBL1 mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-HiEta-Trk-IBL0_Low%20mass%20distribution">VR-HiEta-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_Low%20mass%20distribution">VR-HiEta-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL0_High%20mass%20distribution">VR-HiEta-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_High%20mass%20distribution">VR-HiEta-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL1%20mass%20distribution">VR-HiEta-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL1%20mass%20distribution">VR-HiEta-Mu-IBL1 mass distribution</a></li> </ul> <b>Mass vs. Lifetime limit plots</b> <ul> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Expected">Mass Limit vs. Lifetime, R-hadron, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Observed">Mass Limit vs. Lifetime, R-hadron, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Expected">Mass Limit vs. Lifetime, R-hadron, compressed, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Observed">Mass Limit vs. Lifetime, R-hadron, compressed, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Expected">Mass Limit vs. Lifetime, Chargino, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Observed">Mass Limit vs. Lifetime, Chargino, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Expected">Mass Limit vs. Lifetime, Stau, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Observed">Mass Limit vs. Lifetime, Stau, Observed</a></li> </ul> <b>Cross-section limit plots</b> <ul> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%201ns">Cross Section Limit, R-hadron 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%203ns">Cross Section Limit, R-hadron 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2010ns">Cross Section Limit, R-hadron 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2030ns">Cross Section Limit, R-hadron 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Stable">Cross Section Limit, R-hadron Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%201ns">Cross Section Limit, R-hadron Compressed 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%203ns">Cross Section Limit, R-hadron Compressed 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2010ns">Cross Section Limit, R-hadron Compressed 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2030ns">Cross Section Limit, R-hadron Compressed 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%201ns">Cross Section Limit, Chargino 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%204ns">Cross Section Limit, Chargino 4ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2010ns">Cross Section Limit, Chargino 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2030ns">Cross Section Limit, Chargino 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%20Stable">Cross Section Limit, Chargino Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%201ns">Cross Section Limit, Stau 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%203ns">Cross Section Limit, Stau 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2010ns">Cross Section Limit, Stau 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2030ns">Cross Section Limit, Stau 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%20Stable">Cross Section Limit, Stau Stable</a></li> </ul> <b>Signal Region events projected to other kinematic variables</b> <ul> <li><a href="?table=SR-Inclusive_Low%20MET">SR-Inclusive_Low MET</a></li> <li><a href="?table=SR-Inclusive_High%20MET">SR-Inclusive_High MET</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Track)">SR-Inclusive_Low deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Track)">SR-Inclusive_High deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Track)">SR-Inclusive_Low mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Track)">SR-Inclusive_High mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20Leading%20jet%20pT">SR-Inclusive_Low Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_High%20Leading%20jet%20pT">SR-Inclusive_High Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_Low deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_High deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_Low deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_High deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Leading%20jet)">SR-Inclusive_Low mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Leading%20jet)">SR-Inclusive_High mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20Effective%20mass">SR-Inclusive_Low Effective mass</a></li> <li><a href="?table=SR-Inclusive_High%20Effective%20mass">SR-Inclusive_High Effective mass</a></li> </ul> <b>Acceptance and efficiency values for reinterpretation</b> <ul> <li><a href="?table=Muon%20Reconstruction%20Efficiency%20distribution">Muon Reconstruction Efficiency distribution</a></li> <li><a href="?table=Muon%20Reconstruction%20Efficiency,%20R-hadron%20distribution">Muon Reconstruction Efficiency, R-hadron distribution</a></li> <li><a href="?table=Trigger%20Efficiency%20distribution">Trigger Efficiency distribution</a></li> <li><a href="?table=Event%20Selection%20Efficiency%20distribution">Event Selection Efficiency distribution</a></li> <li><a href="?table=Track%20Selection%20Efficiency%20distribution">Track Selection Efficiency distribution</a></li> <li><a href="?table=Mass%20Window%20Efficiency">Mass Window Efficiency</a></li> </ul> <b>Acceptance and efficiency tables for signal samples</b> <ul> <li><a href="?table=Acceptance,%20R-hadron">Acceptance, R-hadron</a></li> <li><a href="?table=Acceptance,%20R-hadron,%20compressed">Acceptance, R-hadron, compressed</a></li> <li><a href="?table=Acceptance,%20Chargino">Acceptance, Chargino</a></li> <li><a href="?table=Acceptance,%20Stau">Acceptance, Stau</a></li> </ul> <ul> <li><a href="?table=Event-level%20efficiency,%20R-hadron">Event-level efficiency, R-hadron</a></li> <li><a href="?table=Event-level%20efficiency,%20R-hadron,%20compressed">Event-level efficiency, R-hadron, compressed</a></li> <li><a href="?table=Event-level%20efficiency,%20Chargino">Event-level efficiency, Chargino</a></li> <li><a href="?table=Event-level%20efficiency,%20Stau">Event-level efficiency, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron">Efficiency, SR-Inclusve_High, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron,%20compressed">Efficiency, SR-Inclusve_High, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Chargino">Efficiency, SR-Inclusve_High, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Stau">Efficiency, SR-Inclusve_High, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron">Efficiency, SR-Inclusive_Low, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron,%20compressed">Efficiency, SR-Inclusive_Low, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Chargino">Efficiency, SR-Inclusive_Low, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Stau">Efficiency, SR-Inclusive_Low, Stau</a></li> </ul> <b>Cut flow for signal samples</b> <ul> <li><a href="?table=Cut%20Flow,%20R-hadron">Cut Flow, R-hadron</a></li> <li><a href="?table=Cut%20Flow,%20R-hadron,%20compressed">Cut Flow, R-hadron, compressed</a></li> <li><a href="?table=Cut%20Flow,%20Chargino">Cut Flow, Chargino</a></li> <li><a href="?table=Cut%20Flow,%20Stau">Cut Flow, Stau</a></li> </ul>
Comparison of the observed and expected VAR distributionsin VR-LowPt-Inclusive_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Inclusive. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
The observed mass distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
List of expected and observed events, $p_{0}$-value and the corresponding $Z$ local significance, as well as the 95% CLs upper limit of the expected and observed signal events ($S^{95}_ ext{exp} and $S^{95}_ ext{obs}$ ) in each mass window for SR-Inclusive bins of the short lifetime regime.
List of expected and observed events, $p_{0}$-value and the corresponding $Z$ local significance, as well as the 95% CLs upper limit of the expected and observed signal events ($S^{95}_ ext{exp} and $S^{95}_ ext{obs}$ ) in each mass window for SR-Inclusive bins of the long lifetime regime.
The observed $p_{\rm T$ distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $|\eta|$ distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $|\eta|$ distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
Expected and observed distributions in SR-Inclusive_Low of missing transverse momentum. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of missing transverse momentum. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of relative phi-angle between pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of relative phi-angle between pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the transverse mass of pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the transverse mass of pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the relative phi-angle between the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track, and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the relative phi-angle between the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track, and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the relative phi-angle between pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the relative phi-angle between pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the transverse mass of pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the transverse mass of pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the effective mass, defined as the scalar sum pT of the signal candidate track, jets satisfying pT > 30 GeV, excluding ones within deltaR < 0.4 with respect to the signal candidate track, and pTmiss. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the effective mass, defined as the scalar sum pT of the signal candidate track, jets satisfying pT > 30 GeV, excluding ones within deltaR < 0.4 with respect to the signal candidate track, and pTmiss. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
Muon reconstruction efficiency as a function of β and |η| for (a) stable charginos and (b) stable charged R-hadrons. For weakly interacting LLPs with calorimeter materials the efficiency for the chargino is recommended to refer to. The muon reconstruction efficiency for R-hadrons is significantly lower due to having QCD interactions with materials.
Muon reconstruction efficiency as a function of β and |η| for (a) stable charginos and (b) stable charged R-hadrons. For weakly interacting LLPs with calorimeter materials the efficiency for the chargino is recommended to refer to. The muon reconstruction efficiency for R-hadrons is significantly lower due to having QCD interactions with materials.
Trigger and event selection efficiencies. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Trigger and event selection efficiencies. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Signal track selection efficiency as a function of CLLP $\beta\gamma$ for SR-Inclusive_Low and SR-Inclusive_High bins. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Signal selection efficiency by the mass window for SR-Inclusive_Low and SR-Inclusive_High bins.
Acceptance for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |\eta| < 1.8 and r_decay > 500 mm.
Acceptance for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |eta| < 1.8 and r_decay > 500 mm.
Acceptance for the chargino pair-production model for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |\eta| < 1.8 and r_decay > 500 mm.
Acceptance for the stau pair-production model for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |\eta| < 1.8 and r_decay > 500 mm.
Event-level efficiency for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Event-level efficiency for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Event-level efficiency for the chargino pair-production model for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Event-level efficiency for the stau pair-production model for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Efficiency of SR-Inclusive_Highfor the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Highfor the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Highfor the chargino pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Highfor the stau pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the chargino pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the stau pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Passing events in event selection steps for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes.
Passing events in event selection steps for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes.
Passing events in event selection steps for the chargino pair-production model for various masses and lifetimes.
Passing events in event selection steps for the stau pair-production model for various masses and lifetimes.
A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
Cutflow table for the slepton signal sample with $m(\tilde{\ell},\tilde{\chi}_1^0) = (100,70)$ GeV, in the SR-0J $m_{\mathrm{T2}}^{100} \in [100,\infty)$ region. The yields include the process cross section and are weighted to the 139 fb$^{-1}$ luminosity. 246000 events were generated for the sample.
Cutflow table for the slepton signal sample with $m(\tilde{\ell},\tilde{\chi}_1^0) = (100,70)$ GeV, in the SR-1J $m_{\mathrm{T2}}^{100} \in [100,\infty)$ region. The yields include the process cross section and are weighted to the 139 fb$^{-1}$ luminosity. 246000 events were generated for the sample.
Observed and expected exclusion limits on SUSY simplified models, with observed upper limits on signal cross-section (fb) overlaid, for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
The upper panel shows the observed number of events in each of the binned SRs defined in Table 3, together with the expected SM backgrounds obtained after applying the efficiency correction method to compute the number of expected FSB events. `Others' include the non-dominant background sources, e.g. $t \bar{t}$+$V$, Higgs boson and Drell--Yan events. The uncertainty band includes systematic and statistical errors from all sources. The distributions of two signal points with mass splittings $\Delta m(\tilde{\ell},\tilde{\chi}_1^0) = m(\tilde{\ell})-m(\tilde{\chi}_1^0) = 30$ GeV and $\Delta m(\tilde{\ell},\tilde{\chi}_1^0) = m(\tilde{\ell})-m(\tilde{\chi}_1^0) = 50$ GeV are overlaid. The lower panel shows the significance as defined in Ref. [115].
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,0.8125]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,0.8125]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8125,0.815]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8125,0.815]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.815,0.8175]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.815,0.8175]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8175,0.82]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8175,0.82]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,0.8225]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,0.8225]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8225,0.825]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8225,0.825]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.825,0.8275]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.825,0.8275]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8275,0.83]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8275,0.83]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,0.8325]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,0.8325]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8325,0.835]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8325,0.835]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.835,0.8375]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.835,0.8375]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8375,0.84]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8375,0.84]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,0.845]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,0.845]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.845,0.85]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.845,0.85]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,0.86]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,0.86]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.86,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.86,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,0.775]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,0.775]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.775,0.78]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.775,0.78]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,0.785]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,0.785]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.785,0.79]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.785,0.79]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,0.795]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,0.795]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.795,0.80]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.795,0.80]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,0.81]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,0.81]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
Cutflow table for the chargino signal sample with $m\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0=(125,25)$ GeV, in the SR-SF BDT-signal$\in (0.77,1]$ and SR-DF BDT-signal$\in (0.81,1]$ regions. The yields include the process cross-section and are weighted to the 139 fb$^{-1}$ luminosity. 170000 events were generated for the sample.
Observed and expected exclusion limits on SUSY simplified models, with observed upper limits on signal cross-section (fb) overlaid, for chargino-pair production with $W$-boson-mediated decays in the $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ plane. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
The upper panel shows the observed number of events in the SRs defined in Table 3, together with the expected SM backgrounds obtained after the background fit in the CRs. `Others' include the non-dominant background sources, e.g.$t \bar{t}$+$V$, Higgs boson and Drell--Yan events. The uncertainty band includes systematic and statistical errors from all sources. Distributions for three benchmark signal points are overlaid for comparison. The lower panel shows the significance as defined in Ref. [115].
This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.
Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Summary of the total uncertainty in the background prediction for each SR of the tt0L-low, tt0L-high, tt1L and tt2L analysis channels in the statistical combination. Their dominant contributions are indicated by individual lines. Individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
$E_{\text{T}}^{\text{miss}}$ distribution in SR0X for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
$E_{\text{T}}^{\text{miss}}$ distribution in SRWX for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
$E_{\text{T}}^{\text{miss}}$ distribution in SRTX for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Representative fit distribution in the different flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$t\bar{t}$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$tW$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$tj$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$t\bar{t}$ model, defined as the number of selected reconstructed events divided by the acceptance.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$tW$ model, defined as the number of selected reconstructed events divided by the acceptance.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$tj$ model, defined as the number of selected reconstructed events divided by the acceptance.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.
A search for pair production of the supersymmetric partners of the Higgs boson (higgsinos $\tilde{H}$) in gauge-mediated scenarios is reported. Each higgsino is assumed to decay to a Higgs boson and a gravitino. Two complementary analyses, targeting high- and low-mass signals, are performed to maximize sensitivity. The two analyses utilize LHC $pp$ collision data at a center-of-mass energy $\sqrt{s} = 13$ TeV, the former with an integrated luminosity of 36.1 fb$^{-1}$ and the latter with 24.3 fb$^{-1}$, collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing missing transverse momentum and several energetic jets, at least three of which must be identified as $b$-quark jets. No significant excess is found above the predicted background. Limits on the cross-section are set as a function of the mass of the $\tilde{H}$ in simplified models assuming production via mass-degenerate higgsinos decaying to a Higgs boson and a gravitino. Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level. Interpretations of the limits in terms of the branching ratio of the higgsino to a $Z$ boson or a Higgs boson are also presented, and a 45% branching ratio to a Higgs boson is excluded for $m_{\tilde{H}} \approx 400$ GeV.
Distribution of m(h1) for events passing the preselection criteria of the high-mass analysis.
Distribution of effective mass for events passing the preselection criteria of the high-mass analysis.
Exclusion limits on higgsino pair production. The results of the low-mass analysis are used below m(higgsino) = 300 GeV, while those of the high-mass analysis are used above. The figure shows the observed and expected 95% upper limits on the higgsino pair production cross-section as a function of m(higgsino).
Exclusion limits on higgsino pair production divided by the theory cross-section.The results of the low-mass analysis are used below m(higgsino) = 300 GeV, while those of the high-mass analysis are used above. The figure shows the observed and expected 95% upper limits on the higgsino pair production cross-section as a function of m(higgsino).
Observed and expected 95% limits in the m(higgsino) vs BR(higgsino to higgs+gravitino) plane. The regions above the lines are excluded by the analyses.
The observed and expected 95% upper limits on the total pair production cross section for degenerate higgsinos as a function of m(higgsino) for the high-mass search. Only the high-mass analysis results are used in this figure.
The observed and expected 95% upper limits on the total pair production cross section for degenerate higgsinos as a function of m(higgsino) for the high-mass search, divided by the theory cross section. Only the high-mass analysis results are used in this figure.
The observed and expected 95% upper limits on the total pair production cross section for degenerate higgsinos as a function of m(higgsino) for the low-mass search. Only the low-mass analysis results are used in this figure.
The observed and expected 95% upper limits on the total pair production cross section for degenerate higgsinos as a function of m(higgsino) for the low-mass search, divided by the theory cross section. Only the low-mass analysis results are used in this figure.
Particle-level acceptance for the low-mass discovery signal regions low-SR-MET0-meff440 and low-SR-MET150-meff440, shown as a function of higgsino mass. The acceptance is defined as the fraction of signal events passing the particle-level event selection that emulates the detector-level selection. The acceptance calculation considers only those signal events where both higgsinos decay to Higgs bosons that subsequently both decay to b-quarks.
The experimental efficiency of the low-mass analysis, for the two discovery signal regions low-SR-MET0-meff440 and low-SR-MET150-meff440, as a function of higgsino mass. The experimental efficiency is defined as the number of events passing the detector-level event selection divided by the number of events passing the event selection for a perfect detector. The denominator is obtained by implementing particle-level event selection that emulate the detector-level selection. Such particle-level selection is not applied on the numerator.
Particle-level acceptance for the high-mass discovery signal regions SR-4b-meff1-A-disc and SR-3b-meff3-A, shown as a function of higgsino mass. The acceptance is defined as the fraction of signal events passing the particle-level event selection that emulates the detector-level selection. The acceptance calculation considers only those signal events where both higgsinos decay to Higgs bosons that subsequently both decay to b-quarks.
The experimental efficiency of the high-mass analysis, for the two discovery signal regions SR-4b-meff1-A-disc and SR-3b-meff3-A, as a function of higgsino mass. The experimental efficiency is defined as the number of events passing the detector-level event selection divided by the number of events passing the event selection for a perfect detector. The denominator is obtained by implementing particle-level event selection that emulate the detector-level selection. Such particle-level selection is not applied on the numerator.
Example cutflow for SR-3b-meff3-A.
Example cutflow for SR-4b-meff1-A-disc.
Cutflow for low-mass analysis for each signal mass point.
A search is presented for the direct pair production of the stop, the supersymmetric partner of the top quark, that decays through an $R$-parity-violating coupling to a final state with two leptons and two jets, at least one of which is identified as a $b$-jet. The dataset corresponds to an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV, collected in 2015 and 2016 by the ATLAS detector at the LHC. No significant excess is observed over the Standard Model background, and exclusion limits are set on stop pair production at a 95% confidence level. Lower limits on the stop mass are set between 600 GeV and 1.5 TeV for branching ratios above 10% for decays to an electron or muon and a $b$-quark.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1150 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1150 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1150 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1150 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1200 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1200 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1200 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1200 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1250 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1250 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1250 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1250 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1300 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1300 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1300 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1300 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1350 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1350 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1350 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1350 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1400 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1400 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1400 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1400 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1450 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1150 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1450 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1450 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1150 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1450 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1500 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1200 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1500 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1500 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1200 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1500 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1250 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1250 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR1100 signal region.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1300 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1300 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR1100 signal region.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1350 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR800 signal region.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1350 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR1100 signal region.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1400 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR800 signal region.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1400 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR1100 signal region.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1450 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR800 signal region.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1450 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR1100 signal region.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1500 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR800 signal region.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1500 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR1100 signal region.
$m_{bl}^{0}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{bl}^{0}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{bl}^{0}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{bl}^\mathrm{asym}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{bl}^\mathrm{asym}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{bl}^\mathrm{asym}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$H_\mathrm{T}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$H_\mathrm{T}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$H_\mathrm{T}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{ll}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{ll}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{ll}$ distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{bl}^{1}$(rej) distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{bl}^{1}$(rej) distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
$m_{bl}^{1}$(rej) distribution in SR800. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the background-only fit. The last bin includes overflows.
Full list of event selections and MC generator-weighted yields and efficiencies in the inclusive SR800 and SR1100 signal regions for several signal samples of varying stop mass with decay into b-electron, b-muon or b-tau at 1/3 branching ratio.
Full list of event selections and MC generator-weighted yields and efficiencies in the inclusive SR800 and SR1100 signal regions for several signal samples of varying stop mass with decay into b-electron, b-muon or b-tau at 1/3 branching ratio.
Full list of event selections and MC generator-weighted yields and efficiencies in the inclusive SR800 and SR1100 signal regions for several signal samples of varying stop mass with decay into b-electron, b-muon or b-tau at 1/3 branching ratio.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 600 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 600 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 700 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 700 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 800 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 800 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 900 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 900 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1000 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1000 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1050 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1050 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1100 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1100 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1150 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1150 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1200 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1200 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1250 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1250 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1300 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1300 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1350 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1350 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1400 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1400 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1450 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1450 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1500 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1500 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1550 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1550 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1600 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit in the (BRe,BRtau) plane on the cross section for a 1600 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1350 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1350 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1400 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1400 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1450 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1450 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1500 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1500 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1550 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1550 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1600 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1600 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 600 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 600 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 700 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 700 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 800 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 800 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 900 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 900 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1000 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1000 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1050 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1050 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1100 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1100 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1150 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1150 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1200 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1200 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1250 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1250 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1300 GeV stop. All limits are computed at 95% CL.
The chosen signal region in the (BRe,BRtau) plane with the best expected exclusion on the cross section for a 1300 GeV stop. All limits are computed at 95% CL.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.