Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV Au+Au Collisions at the STAR Experiment

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 024908, 2023.
Inspire Record 2631860 DOI 10.17182/hepdata.134023

We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions.

41 data tables match query

The uncorrected number of charged particles except protons ($N_{\rm ch}$) within the pseudorapidity $−2<\eta<0$ used for the centrality selection for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV. The centrality classes are expressed in % of the total cross section. The lower boundary of the particle multiplicity ($N_{\rm ch}$) is included for each centrality class. Values are provided for the average number of participants ($\langle N_{\rm part}\rangle$) and pileup fraction. The fraction of pileup for each centrality bin is also shown in the last column. The averaged pileup fraction from the minimum biased collisions is determined to be 0.46%. Values in the parentheses are systematic uncertainty.

The centrality definition determined by $N_{\rm part}$ in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV from the UrQMD model. The centrality definition is only used in the UrQMD calculation.

Main contributors to systematic uncertainty to the proton cumulant ratios: $C_2/C_1$, $C_3/C_2$,and $C_4/C_2$ from 0–5% central 3 GeV Au+Au collisions. The first row shows the values and statistical uncertainties of those ratios. The corresponding values of these ratios along with the statistical uncertainties are listed in the table. The final total value is the quadratic sum of uncertainties from centrality, pileup, and the dominant contribution from TPC hits, DCA, TOF $m^2$, and detector efficiency. Clearly, this analysis is systematically dominant.

More…

Azimuthal anisotropy measurement of (multi-)strange hadrons in Au+Au collisions at $\sqrt{s_{\text{NN}}}$ = 54.4 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 024912, 2023.
Inspire Record 2635688 DOI 10.17182/hepdata.130768

Azimuthal anisotropy of produced particles is one of the most important observables used to access the collective properties of the expanding medium created in relativistic heavy-ion collisions. In this paper, we present second ($v_{2}$) and third ($v_{3}$) order azimuthal anisotropies of $K_{S}^{0}$, $\phi$, $\Lambda$, $\Xi$ and $\Omega$ at mid-rapidity ($|y|<$1) in Au+Au collisions at $\sqrt{s_{\text{NN}}}$ = 54.4 GeV measured by the STAR detector. The $v_{2}$ and $v_{3}$ are measured as a function of transverse momentum and centrality. Their energy dependence is also studied. $v_{3}$ is found to be more sensitive to the change in the center-of-mass energy than $v_{2}$. Scaling by constituent quark number is found to hold for $v_{2}$ within 10%. This observation could be evidence for the development of partonic collectivity in 54.4 GeV Au+Au collisions. Differences in $v_{2}$ and $v_{3}$ between baryons and anti-baryons are presented, and ratios of $v_{3}$/$v_{2}^{3/2}$ are studied and motivated by hydrodynamical calculations. The ratio of $v_{2}$ of $\phi$ mesons to that of anti-protons ($v_{2}(\phi)/v_{2}(\bar{p})$) shows centrality dependence at low transverse momentum, presumably resulting from the larger effects from hadronic interactions on anti-proton $v_{2}$.

62 data tables match query

$v_{2}(p_{T})$ for $K_{S}^{0}$ (Centrality:0-10%)

$v_{2}(p_{T})$ for $K_{S}^{0}$ (Centrality:10-40%)

$v_{2}(p_{T})$ for $K_{S}^{0}$ (Centrality:40-80%)

More…

First measurement of beam-recoil observables C(x) and C(z) in hyperon photoproduction.

The CLAS collaboration Bradford, R.K. ; Schumacher, R.A. ; Adams, G. ; et al.
Phys.Rev.C 75 (2007) 035205, 2007.
Inspire Record 732402 DOI 10.17182/hepdata.31496

Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\vec\gamma + p \to K^+ + \vec\Lambda$ and $\vec\gamma + p \to K^+ + \vec\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\cos\theta_{K^+}^{c.m.}< +0.95$. For the $\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\it total} $\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

34 data tables match query

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.032 GeV and W = 1.679 GeV.

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.132 GeV and W = 1.734 GeV.

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.232 GeV and W = 1.787 GeV.

More…

Delta(phi) Delta(eta) correlations in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 75 (2007) 034901, 2007.
Inspire Record 721060 DOI 10.17182/hepdata.102086

We report charged-particle pair correlation analyses in the space of Delta -phi (azimuth) and Delta -eta (pseudo-rapidity), for central Au + Au collisions at sqrt{s_{NN}} = 200 GeV in the STAR detector. The analysis involves unlike-sign charge pairs and like-sign charge pairs, which are transformed into charge-dependent (CD) signals and charge-independent (CI) signals. We present detailed parameterizations of the data. A model featuring dense gluonic hot spots as first proposed by van Hove predicts that the observables under investigation would have sensitivity to such a substructure should it occur, and the model also motivates selection of transverse momenta in the range 0.8 < p_t < 2.0$ GeV/c. Both CD and CI correlations of high statistical significance are observed and possible interpretations are discussed.

16 data tables match query

FIG. 1: a) left side: The $\Delta\phi$ - $\Delta\eta$ correlation data for unlike-sign charge particle pairs from the Star central trigger dataset shown in a 2-dimensional (2-D) perspective plot. The particle tracks have 0.8 GeV/c < $p_t$ < 2.0 GeV/c and |$\eta$| < 1.0. The structure that looks like tiles on a roof is due to the readout boundary effects of the 12 sector TPC. b) right side: The similar correlation data for like-sign charge particle pairs is shown.

FIG. 1: a) left side: The $\Delta\phi$ - $\Delta\eta$ correlation data for unlike-sign charge particle pairs from the Star central trigger dataset shown in a 2-dimensional (2-D) perspective plot. The particle tracks have 0.8 GeV/c < $p_t$ < 2.0 GeV/c and |$\eta$| < 1.0. The structure that looks like tiles on a roof is due to the readout boundary effects of the 12 sector TPC. b) right side: The similar correlation data for like-sign charge particle pairs is shown.

FIG. 2: a) left side: The correlation data for the ratio of the histograms of same-event-pairs to mixed-event-pairs for unlike-sign charged pairs, shown in a two-dimensional (2-D) perspective plot $\Delta\phi$ - $\Delta\eta$. The plot was normalized to a mean of 1. b) right side: The similar correlation data for like-sign charge pairs.

More…

First Observation of Directed Flow of Hypernuclei $^3_{\Lambda}$H and $^4_{\Lambda}$H in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Aboona, Bassam ; Adam, Jaroslav ; Adams, Joseph ; et al.
Phys.Rev.Lett. 130 (2023) 212301, 2023.
Inspire Record 2605845 DOI 10.17182/hepdata.136028

We report here the first observation of directed flow ($v_1$) of the hypernuclei $^3_{\Lambda}$H and $^4_{\Lambda}$H in mid-central Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV at RHIC. These data are taken as part of the beam energy scan program carried out by the STAR experiment. From 165 $\times$ 10$^{6}$ events in 5%-40% centrality, about 8400 $^3_{\Lambda}$H and 5200 $^4_{\Lambda}$H candidates are reconstructed through two- and three-body decay channels. We observe that these hypernuclei exhibit significant directed flow. Comparing to that of light nuclei, it is found that the midrapidity $v_1$ slopes of $^3_{\Lambda}$H and $^4_{\Lambda}$H follow baryon number scaling, implying that the coalescence is the dominant mechanism for these hypernuclei production in such collisions.

8 data tables match query

$\Lambda$ hyperon and hypernuclei directed flow $v_1$, shown as a function of rapidity, from the $\sqrt{s_{NN}}$ = 3 GeV 5-40% mid-central Au+Au collisions. In the case of $^{3}_{\Lambda}$H $v_1$, both two-body (dots) and three-body (triangles) decays are used. The linear terms of the fitting for $#Lambda$, $^{3}_{\Lambda}$H and $^{4}_{\Lambda}$H are shown as the yellow-red lines. The rapidity dependence of $v_1$ for $p$, $d$, $t$, $^3$He, and $^4$He are also shown as open markers (circles, diamonds, up-triangles, down-triangles and squares), and the linear terms of the fitting results are shown as dashed lines in the positive rapidity region.

$\Lambda$ hyperon and hypernuclei directed flow $v_1$, shown as a function of rapidity, from the $\sqrt{s_{NN}}$ = 3 GeV 5-40% mid-central Au+Au collisions. In the case of $^{3}_{\Lambda}$H $v_1$, both two-body (dots) and three-body (triangles) decays are used. The linear terms of the fitting for $#Lambda$, $^{3}_{\Lambda}$H and $^{4}_{\Lambda}$H are shown as the yellow-red lines. The rapidity dependence of $v_1$ for $p$, $d$, $t$, $^3$He, and $^4$He are also shown as open markers (circles, diamonds, up-triangles, down-triangles and squares), and the linear terms of the fitting results are shown as dashed lines in the positive rapidity region.

$\Lambda$ hyperon and hypernuclei directed flow $v_1$, shown as a function of rapidity, from the $\sqrt{s_{NN}}$ = 3 GeV 5-40% mid-central Au+Au collisions. In the case of $^{3}_{\Lambda}$H $v_1$, both two-body (dots) and three-body (triangles) decays are used. The linear terms of the fitting for $#Lambda$, $^{3}_{\Lambda}$H and $^{4}_{\Lambda}$H are shown as the yellow-red lines. The rapidity dependence of $v_1$ for $p$, $d$, $t$, $^3$He, and $^4$He are also shown as open markers (circles, diamonds, up-triangles, down-triangles and squares), and the linear terms of the fitting results are shown as dashed lines in the positive rapidity region.

More…

Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 131 (2023) 202301, 2023.
Inspire Record 2643014 DOI 10.17182/hepdata.139081

The polarization of $\Lambda$ and $\bar{\Lambda}$ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild $p_T$ dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and $p_T$ dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.

5 data tables match query

$sgn(\alpha_H)\langle\cos(\theta_p^{\ast})\rangle$ of $\Lambda$ and $\bar{\Lambda}$ as a function of hyperon azimuthal angle relative to the second-order event plane in isobar collisions at 200 GeV.

$sgn(\alpha_H)\langle\cos(\theta_p^{\ast})\rangle$ of $\Lambda$ and $\bar{\Lambda}$ as a function of hyperon azimuthal angle relative to the third-order event plane in isobar collisions at 200 GeV.

$P_z$ sine coefficients of $\Lambda+\bar{\Lambda}$ as a function of centrality in isobar collisions at 200 GeV.

More…

Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Sci.Adv. 9 (2023) eabq3903, 2023.
Inspire Record 2062296 DOI 10.17182/hepdata.132921

A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus forming a short-lived vector meson (e.g. ${\rho^0}$). In this experiment, the polarization was utilized in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ${\rho^0\rightarrow\pi^+\pi^-}$ decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ${\rho^0}$ travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions, and found to be $6.53\pm 0.06$ fm ($^{197} {\rm Au }$) and $7.29\pm 0.08$ fm ($^{238} {\rm U}$), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of non-identical particles.

14 data tables match query

The invariant mass distribution of pi+pi- pairs collected from Au+Au and U+U collisions.

Two-dimensional $\rho^0$ momentum distribution from Au+Au collisions.

Two-dimensional $\rho^0$ momentum distribution from Au+Au collisions.

More…

$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

71 data tables match query

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).

More…

Version 2
Observation of sequential $\Upsilon$ suppression in Au+Au collisions at $\sqrt{s_{_\mathrm{NN}}}$ = 200 GeV with the STAR experiment

The STAR collaboration Aboona, Bassam ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 130 (2023) 112301, 2023.
Inspire Record 2112341 DOI 10.17182/hepdata.133217

We report on measurements of sequential $\Upsilon$ suppression in Au+Au collisions at $\sqrt{s_{_\mathrm{NN}}}$ = 200 GeV with the STAR detector at the Relativistic Heavy Ion Collider (RHIC) through both the dielectron and dimuon decay channels. In the 0-60% centrality class, the nuclear modification factors ($R_{\mathrm{AA}}$), which quantify the level of yield suppression in heavy-ion collisions compared to $p$+$p$ collisions, for $\Upsilon$(1S) and $\Upsilon$(2S) are $0.40 \pm 0.03~\textrm{(stat.)} \pm 0.03~\textrm{(sys.)} \pm 0.09~\textrm{(norm.)}$ and $0.26 \pm 0.08~\textrm{(stat.)} \pm 0.02~\textrm{(sys.)} \pm 0.06~\textrm{(norm.)}$, respectively, while the upper limit of the $\Upsilon$(3S) $R_{\mathrm{AA}}$ is 0.17 at a 95% confidence level. This provides experimental evidence that the $\Upsilon$(3S) is significantly more suppressed than the $\Upsilon$(1S) at RHIC. The level of suppression for $\Upsilon$(1S) is comparable to that observed at the much higher collision energy at the Large Hadron Collider. These results point to the creation of a medium at RHIC whose temperature is sufficiently high to strongly suppress excited $\Upsilon$ states.

18 data tables match query

Inclusive Y(1S) $R_{AA}$ as a function of centrality in Au+Au collisions at 200 GeV. The bin corresponding to $N_{part}$ = 162 is for 0-60% centrality. Global uncertainty of 20.0% not shown.

Inclusive Y(1S) $R_{AA}$ as a function of centrality in Au+Au collisions at 200 GeV. The bin corresponding to $N_{part}$ = 162 is for 0-60% centrality. Global uncertainty of 20.0% not shown.

Inclusive Y(2S) $R_{AA}$ as a function of centrality in Au+Au collisions at 200 GeV. The bin corresponding to $N_{part}$ = 162 is for 0-60% centrality. Global uncertainty of 20.5% not shown.

More…

Measurement of cold nuclear matter effects for inclusive $J/\psi$ in $p$+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 825 (2022) 136865, 2022.
Inspire Record 1946829 DOI 10.17182/hepdata.114371

Measurement by the STAR experiment at RHIC of the cold nuclear matter (CNM) effects experienced by inclusive $J/\psi$ at mid-rapidity in 0-100%$p$+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV is presented. Such effects are quantified utilizing the nuclear modification factor, $R_{p\mathrm{Au}}$, obtained by taking a ratio of $J/\psi$ yield in $p$+Au collisions to that in $p$+$p$ collisions scaled by the number of binary nucleon-nucleon collisions. The differential $J/\psi$ yield in both $p$+$p$ and $p$+Au collisions is measured through the dimuon decay channel, taking advantage of the trigger capability provided by the Muon Telescope Detector in the RHIC 2015 run. Consequently, the $J/\psi$$R_{p\mathrm{Au}}$ is derived within the transverse momentum ($p_{\mathrm{T}}$) range of 0 to 10 GeV/$c$. A suppression of approximately 30% is observed for $p_{\mathrm{T}}<2$ GeV/$c$, while $J/\psi$ $R_{p\mathrm{Au}}$ becomes compatible with unity for $p_{\mathrm{T}}$ greater than 3 GeV/$c$, indicating the $J/\psi$ yield is minimally affected by the CNM effects at high $p_{\mathrm{T}}$. Comparison to a similar measurement from 0-20% central Au+Au collisions reveals that the observed strong $J/\psi$ suppression above 3 Gev/$c$ is mostly due to the hot medium effects, providing strong evidence for the formation of the quark-gluon plasma in these collisions. Several model calculations show qualitative agreement with the measured $J/\psi$ $R_{p\mathrm{Au}}$, while their agreement with the $J/\psi$ yields in $p$+$p$ and $p$+Au collisions is worse.

3 data tables match query

Inclusive J/psi cross section times branching ratio of the dimuon decay channel in p+p collisions at 200 GeV. Global uncertainty of 12.5% not shown.

Inclusive J/psi cross section times branching ratio of the dimuon decay channel in p+Au collisions at 200 GeV. Global uncertainty of 1.5% not shown.

R_pAu of inclusive J/psi in p+Au collisions at 200 GeV. Global uncertainty of 13.9% not shown.