Medium effects in proton-induced $K^{0}$ production at 3.5 GeV

The HADES collaboration Agakishiev, G. ; Arnold, O. ; Belver, D. ; et al.
Phys.Rev.C 90 (2014) 054906, 2014.
Inspire Record 1292844 DOI 10.17182/hepdata.64407

We present the analysis of the inclusive $K^{0}$ production in p+p and p+Nb collisions measured with the HADES detector at a beam kinetic energy of 3.5 GeV. Data are compared to the GiBUU transport model. The data suggest the presence of a repulsive momentum-dependent kaon potential as predicted by the Chiral Perturbation Theory (ChPT). For the kaon at rest and at normal nuclear density, the ChPT potential amounts to $\approx 35$ MeV. A detailed tuning of the kaon production cross sections implemented in the model has been carried out to reproduce the experimental data measured in p+p collisions. The uncertainties in the parameters of the model were examined with respect to the sensitivity of the experimental results from p+Nb collisions to the in-medium kaon potential.

2 data tables

The K0 production cross section in P P collisions.

The K0 production cross section in P + NB collisions. The uncertainty given on SIG(P NB --> K0 X) is the dominating absolute normalization uncertainty.


Light vector meson production in pp collisions at sqrt(s) = 7 TeV

The ALICE collaboration Abelev, B. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 710 (2012) 557-568, 2012.
Inspire Record 1080945 DOI 10.17182/hepdata.58629

The ALICE experiment has measured low-mass dimuon production in pp collisions at $\sqrt{s} = 7$ TeV in the dimuon rapidity region 2.5<y<4. The observed dimuon mass spectrum is described as a superposition of resonance decays ($\eta$, $\rho$, $\omega$, $\eta^{'}$, $\phi$) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for $\omega$ and $\phi$ are $\sigma_\omega$ (1<$p_{\rm T}$<5 GeV/$c$,2.5<y<4) = 5.28 $\pm$ 0.54 (stat) $\pm$ 0.50 (syst) mb and $\sigma_\phi$(1<$p_{\rm T}$<5 GeV/$c$,2.5<y<4)=0.940 $\pm$ 0.084 (stat) $\pm$ 0.078 (syst) mb. The differential cross sections $d^2\sigma/dy dp_{\rm T}$ are extracted as a function of $p_{\rm T}$ for $\omega$ and $\phi$. The ratio between the $\rho$ and $\omega$ cross section is obtained. Results for the $\phi$ are compared with other measurements at the same energy and with predictions by models.

5 data tables

Differential phi cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one.

Differential omega cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one.

Total phi cross section from the di-muon data. The first error is statistical, the second is a systematic error.

More…

Exclusive Measurement of the $pp \to nn\pi^+\pi^+$ Reaction at 1.1 GeV

The CELSIUS/WASA collaboration Skorodko, T. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Eur.Phys.J.A 47 (2011) 108, 2011.
Inspire Record 879711 DOI 10.17182/hepdata.63827

First exclusive data for the $pp \to nn\pi^+\pi^+$ reaction have been obtained at CELSIUS with the WASA detector setup at a beam energy of $T_p$ = 1.1 GeV. Total and differential cross sections disagree with theoretical calculations, which predict the $\Delta\Delta$ excitation to be the dominant process at this beam energy. Instead the data require the excitation of a higher-lying $\Delta$ state, most likely the $\Delta(1600)$, to be the leading process.

9 data tables

Total cross section.

Distribution of the invariant mass of the PI+PI+ system.

Distribution of the cosine of the PI+_PI+ opening angle DELTA at an incident kinetic energy of 1.1 GeV.

More…

Delta Delta Excitation in Proton-Proton Induced pi0pi0 Production

Skorodko, T. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Phys.Lett.B 695 (2011) 115-123, 2011.
Inspire Record 860341 DOI 10.17182/hepdata.56497

Exclusive measurements of the $pp \to pp\pi^0\pi^0$ reaction have been performed at CELSIUS/WASA at energies from threshold up to $T_p$ = 1.3 GeV. Total and differential cross sections have been obtained. Here we concentrate on energies $T_p \ge$ 1 GeV, where the $\Delta\Delta$ excitation becomes the leading process. No evidence is found for a significant ABC effect beyond that given by the conventional $t$-channel $\Delta\Delta$ excitation. This holds also for the double-pionic fusion to the quasibound $^2$He. The data are compared to model predictions, which are based on both pion and $\rho$ exchange. Total and differential cross sections are at variance with these predictions and call for a profound modification of the $\rho$-exchange. A phenomenological modification allowing only a small $\rho$ exchange contribution leads to a quantitative description of the data.

33 data tables

Cross section taken from an earlier CELSIUS publication (PL B679(2009)30 - arXiv:0903.2087).

PI0_PI0 invariant mass distribution at an incident kinetic energy of 1000 MeV.

PI0_PI0 invariant mass distribution at an incident kinetic energy of 1100 MeV.

More…

Cross section of the $pp\to K^+\Sigma^+n$ reaction close to threshold

The COSY-HIRES collaboration Budzanowski, A. ; Chatterjee, A. ; Clement, H. ; et al.
Phys.Lett.B 692 (2010) 10-14, 2010.
Inspire Record 861052 DOI 10.17182/hepdata.55371

We have measured inclusive data on $K^+$-meson production in $pp$ collisions at COSY J\"ulich close to the hyperon production threshold and determined the hyperon-nucleon invariant mass spectra. The spectra were decomposed into three parts: $\Lambda p$, $\Sigma^0p$ and $\Sigma^+n$. The cross section for the $\Sigma^+n$ channel was found to be much smaller than a previous measurement in that excess energy region. The data together with previous results at higher energies are compatible with a phase space dependence.

3 data tables

Total cross section for P P --> K+ SIGMA+ N. Errors are combined statistics and systematics.

Deduced total cross section for P P --> K+ P LAMBDA.

Deduced total cross section for P P --> K+ SIGMA0 P.


Invariant mass distributions for the pp to p p eta reaction at Q=10 MeV

Moskal, P. ; Czyżykiewicz, R. ; Czerwiński, E. ; et al.
Eur.Phys.J.A 43 (2010) 131-136, 2010.
Inspire Record 839339 DOI 10.17182/hepdata.54192

Proton-proton and proton-eta invariant mass distributions and the total cross section for the pp to pp eta reaction have been determined near the threshold at an excess energy of Q=10 MeV. The experiment has been conducted using the COSY-11 detector setup and the cooler synchrotron COSY. The determined invariant mass spectra reveal significant enhancements in the region of low proton-proton relative momenta, similarly as observed previously at higher excess energies of Q=15.5 MeV and Q= 40MeV.

3 data tables

Total cross section determined from the integral of the invariant mass distribution.

Distribution of the square of the invariant mass of the proton-proton system.

Distribution of the square of the invariant mass of the proton-eta system.


Exclusive Measurements of pp -> dpi+pi0: Double-Pionic Fusion without ABC Effect

The CELSIUS/WASA collaboration Kren, F. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Phys.Lett.B 684 (2010) 110-113, 2010.
Inspire Record 833116 DOI 10.17182/hepdata.54563

Exclusive measurements of the reaction pp -> dpi+pi0 have been carried out at T_p = 1.1 GeV at the CELSIUS storage ring using the WASA detector. The isovector pi+pi0 channel exhibits no enhancement at low invariant pipi masses, i. e. no ABC effect. The differential distributions are in agreement with the conventional t-channel Delta-Delta excitation process, which also accounts for the observed energy dependence of the total cross section. This is an update of a previously published version -- see important note at the end of the article.

3 data tables

Updated total cross section for the reaction P P --> DEUT PI+ PI0, from the erratum.

Angular distribution of the PI0 in the CM system for the process P P --> DEUT PI+ PI0. As described in the erratum, these values should be multiplied by a factor of 2.3.

Angular distribution of the deuterium in the CM system for the process P P --> DEUT PI+ PI0. As described in the erratum, these values should be multiplied by a factor of 2.3.


Two-Pion Production in Proton-Proton Collisions: Experimental Total Cross Sections and their Isospin Decomposition

Skorodko, T. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Phys.Lett.B 679 (2009) 30-35, 2009.
Inspire Record 823365 DOI 10.17182/hepdata.54188

The two-pion production in pp-collisions has been investigated at CELSIUS in exclusive measurements from threshold up to $T_p$ = 1.36 GeV. Total and differential cross sections have been obtained for the channels $pn\pi^+\pi^0$, $pp\pi^+\pi^-$, $pp\pi^0\pi^0$ and also $nn\pi^+\pi^+$. For intermediate incident energies $T_p >$ 1 GeV, i.e. in the region which is beyond the Roper excitation but at the onset of $\Delta\Delta$ excitation, the total $pp\pi^0\pi^0$ cross section falls behind theoretical predictions by as much as an order of magnitude near 1.2 GeV, whereas the $nn\pi^+\pi^+$ cross section is a factor of five larger than predicted. An isospin decompostion of the total cross sections exhibits a s-channel-like energy dependence in the region of the Roper excitation as well as a significant contribution of an isospin 3/2 resonance other than the $\Delta(1232)$. As possible candidates the $\Delta(1600)$ and the $\Delta(1700)$ are discussed.

2 data tables

Cross section for the (P P PI0 PI0) channel.

Cross sections for the (N N PI+ PI+) and (P N PI+ PI0) channels at EKIN = 1.1 GeV.


On the Production of $\pi^+\pi^+$ Pairs in pp Collisions at 0.8 GeV

The COSY-TOF collaboration Abd El-Samad, S. ; Bilger, R. ; Brinkmann, K.-Th. ; et al.
Eur.Phys.J.A 42 (2009) 159-161, 2009.
Inspire Record 823367 DOI 10.17182/hepdata.52421

Data accumulated recently for the exclusive measurement of the $pp\to pp\pi^+\pi^-$ reaction at a beam energy of 0.793 GeV using the COSY-TOF spectrometer have been analyzed with respect to possible events from the $pp \to nn\pi^+\pi^+$ reaction channel. The latter is expected to be the only $\pi\pi$ production channel, which contains no major contributions from resonance excitation close to threshold and hence should be a good testing ground for chiral dynamics in the $\pi\pi$ production process. No single event has been found, which meets all conditions for being a candidate for the $pp \to nn \pi^+\pi^+$ reaction. This gives an upper limit for the cross section of 0.16 $\mu$b (90% C.L.), which is more than an order of magnitude smaller than the cross sections of the other two-pion production channels at the same incident energy.

1 data table

Upper limit to the P P --> N N PI+ PI+ cross section.


Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 77 (2008) 024912, 2008.
Inspire Record 768530 DOI 10.17182/hepdata.57373

All of the experimental data points presented in the original paper are correct and unchanged (including statistical and systematic uncertainties). However, herein we correct a comparison between the experimental data and a theoretical picture, because we discovered a mistake in the code used. All of the most probable sigma_breakup values differ by less than 0.4 mb from those originally presented. However, the one standard deviation uncertainties (that include contributions from both the statistical and systematic uncertainties on the experimental data points) are approximately 30-60% larger than originally reported. We give a table of the new comparison results and corrected versions of Figs. 8-11 of the original paper and we note that no correction is needed for results from the data-driven method in Fig. 13.

22 data tables

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 3 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 5 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus PT at backward rapidity (-2.2<y<-1.2) in D+AU collisions.

More…