Measurement of D*+- meson production and F2(c) in deep inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 528 (2002) 199-214, 2002.
Inspire Record 561885 DOI 10.17182/hepdata.46834

The inclusive production of D^{*+-}(2010) mesons in deep-inelastic scattering is studied with the H1 detector at HERA. In the kinematic region 1<Q^2<100 GeV^2 and 0.05<y<0.7 an e^+p cross section for inclusive D^(*+-) meson production of 8.50+- 0.42 (stat.)^(+1.21)_(-1.00) (syst.) nb is measured in the visible range p_(tD^*)>1.5 GeV and |\eta_(D^*)|<1.5. Single and double differential inclusive D^(*+-) meson cross sections are compared to perturbative QCD calculations in two different evolution schemes. The charm contribution to the proton structure, F_2^c(x,Q^2), is determined by extrapolating the visible charm cross section to the full phase space. This contribution is found to rise from about 10% at Q^2 = 1.5 GeV^2 to more than 25% at Q^2 = 60 GeV^2 corresponding to x values ranging from 5*10^(-5) to 3*10^(-3)$.

14 data tables

The inclusive cross section for D*+- production. The second DSYS error is related to the changes in efficiency obtained by using different Monte Carlo generators and varying the model parameters.

Single differential visible cross section as a function of W.

Single differential visible cross section as a function of PT.

More…

Systematics of midrapidity transverse energy distributions in limited apertures from p+Be to Au+Au collisions at relativistic energies

Abbott, T. ; Ahle, L. ; Akiba, Y. ; et al.
Phys.Rev.C 63 (2001) 064602, 2001.
Inspire Record 556107 DOI 10.17182/hepdata.25404

Measurements of the A dependence and pseudorapidity interval (δη) dependence of midrapidity ET distributions in a half-azimuth (Δφ=π) electromagnetic calorimeter are presented for p+Be, p+Au, O+Cu, Si+Au, and Au+Au collisions at the BNL-AGS (Alternating-Gradient Synchrotron). The shapes of the upper edges of midrapidity ET distributions as a function of the pseudorapidity interval δη in the range 0.3 to 1.3, roughly centered at midrapidity, are observed to vary with δη, like multiplicity—the upper edges of the distributions flatten as δη is reduced. At the typical fixed upper percentiles of ET distributions used for nuclear geometry characterization by centrality definition—7 percentile, 4 percentile, 2 percentile, 1 percentile, 0.5 percentile—the effect of this variation in shape on the measured projectile Ap dependence for 16O, 28Si, 197Au projectiles on an Au target is small for the ranges of δη and percentile examined. The ET distributions for p+Au and p+Be change in shape with δη; but in each δη interval the shapes of the p+Au and p+Be distributions remain indentical with each other—a striking confirmation of the absence of multiple-collision effects at midrapidity at AGS energies. The validity of the nuclear geometry characterization versus δη is illustrated by plots of the ET(δη) distribution in each δη interval in units of the measured 〈ET(δη)〉p+Au in the same δη interval for p+Au collisions. These plots, in the physically meaningful units of “number of average p+Au collisions,” are nearly universal as a function of δη, confirming that the reaction dynamics for ET production at midrapidity at AGS energies is governed by the number of projectile participants and can be well characterized by measurements in apertures as small as Δφ=π, δη=0.3.

28 data tables

ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.22 < ETARAP < 2.5, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.

ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.38 < ETARAP < 2.34, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.

ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.54 < ETARAP < 2.18, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.

More…

Diffractive jet production in deep inelastic e+ p collisions at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 20 (2001) 29-49, 2001.
Inspire Record 539087 DOI 10.17182/hepdata.46939

A measurement is presented of dijet and 3-jet cross sections in low-|t| diffractive deep-inelastic scattering interactions of the type ep -> eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb^(-1), are used to measure hadron level single and double differential cross sections for 4<Q^2<80 GeV^2, x_pom<0.05 and p_(T,jet)>4 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqbarg over qqbar states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reproduce the shapes of the cross sections at low x_pom values.

24 data tables

Average values, over the specified interval, of the differential hadron level dijet cross section as a function of Q**2.

Average values, over the specified interval, of the differential hadron level dijet cross section as a function of the average transverse momentum of the two jets in the c.m.frame.

Average values, over the specified interval, of the differential hadron level dijet cross section as a function of the average pseudorapidity of the two jets in the lab frame.

More…

Measurement of inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 467 (1999) 137-146, 1999.
Inspire Record 505281 DOI 10.17182/hepdata.28070

Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $&lt; p_{T}^{\mathrm{D^*}} &lt; 5 $ GeV and $\mathrm{|\eta^{D^*}|} &lt; 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.

3 data tables

The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.

The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.

Integrated cross section in the visible kinematic region.


Forward pi0 meson production at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 462 (1999) 440-452, 1999.
Inspire Record 504022 DOI 10.17182/hepdata.43918

High transverse momentum pi0-mesons have been measured with the H1 detector at HERA in deep-inelastic ep scattering events at low Bjorken-x, down to x <~ 4.10^{-5}. The measurement is performed in a region of small angles with respect to the proton remnant in the laboratory frame of reference, namely the forward region, and corresponds to central rapidity in the centre of mass system of the virtual photon and proton. This region is expected to be particularly sensitive to QCD effects in hadronic final states. Differential cross-sections for inclusive pi0-meson production are presented as a function of Bjorken-x and the four-momentum transfer Q^2, and as a function of transverse momentum and pseudorapidity. A recent numerical BFKL calculation and predictions from QCD models based on DGLAP parton evolution are compared with the data.

12 data tables

Axis error includes +- 5/5 contribution (Trigger efficiency).

Axis error includes +- 5/5 contribution (Trigger efficiency).

Axis error includes +- 5/5 contribution (Trigger efficiency).

More…

Comparison of $p \bar{p}$ and $p p$ Interactions at $\sqrt{s}=53$-{GeV}

The UA5 collaboration Alpgard, K. ; Ansorge, R.E. ; Asman, B. ; et al.
Phys.Lett.B 112 (1982) 183-188, 1982.
Inspire Record 176647 DOI 10.17182/hepdata.30953

Results are presented from the first p p colliding beam runs at the CERN ISR, using the UA5 streamer chamber detector. p p interactions at s = 53 GeV are compared with pp data taken in the same experiment. The results are in good agreement with extrapolations of low-energy p p data.

5 data tables

No description provided.

MOMENTS OF MULTIPLICITY DISTRIBUTIONS FOR P P AND P AP. MULT(NAME=DQ) IS <(N-<N>)**Q>**1/Q. MULT(NAME=NQ) IS <N**Q>.

Data read from plot.

More…