Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 95 (2017) 112005, 2017.
Inspire Record 1591327 DOI 10.17182/hepdata.77381

A measurement of the production cross section for two isolated photons in proton-proton collisions at a center-of-mass energy of $\sqrt{s}=8$ TeV is presented. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying $|\eta^{\gamma}|<1.37$ or ${1.56<|\eta^{\gamma}|<2.37}$ and transverse energies of respectively $E_{\mathrm{T,1}}^{\gamma}>40$ GeV and $E_{\mathrm{T,2}}^{\gamma}>30$ GeV for the two leading photons ordered in transverse energy produced in the interaction.The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The measured cross section integrated within the fiducial volume is $16.8 \pm 0.8$ pb. The data are compared to fixed-order QCD calculations at next-to-leading-order and next-to-next-to-leading-order accuracy as well as next-to-leading-order computations including resummation of initial-state gluon radiation at next-to-next-to-leading logarithm or matched to a parton shower, with relative uncertainties varying from 5% to 20%.

7 data tables match query

The measured fiducial (total xs).

The measured differential as a function of Mgg.

The measured differential as a function of pTgg.

More…

Search for supersymmetry at sqrt(s)=8 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 06 (2014) 035, 2014.
Inspire Record 1289225 DOI 10.17182/hepdata.63682

A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb$^{-1}$ of $\sqrt{s} =$ 8 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated.

106 data tables match query

Numbers of observed and background events for SR0b for each bin of the distribution in Meff. The table corresponds to Fig. 4(b). The statistical and systematic uncertainties are combined for the expected backgrounds.

Numbers of observed and background events for SR1b for each bin of the distribution in Meff. The table corresponds to Fig. 4(c). The statistical and systematic uncertainties are combined for the predicted numbers.

Numbers of observed and background events for SR3b for each bin of the distribution in Meff. The table corresponds to Fig. 4(a). The statistical and systematic uncertainties are combined for the predicted numbers.

More…

Measurement of double-differential cross sections for top quark pair production in pp collisions at sqrt(s) = 8 TeV and impact on parton distribution functions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 77 (2017) 459, 2017.
Inspire Record 1516191 DOI 10.17182/hepdata.77008

Normalized double-differential cross sections for top quark pair (t t-bar) production are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed in the dilepton e+/- mu-/+ final state. The t t-bar cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and t t-bar system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured t t-bar cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.

0 data tables match query

Version 2
Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 161, 2021.
Inspire Record 1911567 DOI 10.17182/hepdata.102987

A measurement of the top quark mass is performed using a data sample enriched with single top quark events produced in the $t$ channel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC in 2016. Candidate events are selected by requiring an isolated high-momentum lepton (muon or electron) and exactly two jets, of which one is identified as originating from a bottom quark. Multivariate discriminants are designed to separate the signal from the background. Optimized thresholds are placed on the discriminant outputs to obtain an event sample with high signal purity. The top quark mass is found to be 172.13 $^{+0.76}_{-0.77}$ GeV, where the uncertainty includes both the statistical and systematic components, reaching sub-GeV precision for the first time in this event topology. The masses of the top quark and antiquark are also determined separately using the lepton charge in the final state, from which the mass ratio and difference are determined to be 0.9952 $^{+0.0079}_{-0.0104}$ and 0.83 $^{+1.79}_{-1.35}$ GeV, respectively. The results are consistent with $CPT$ invariance.

38 data tables match query

Top quark mass measured inclusive of lepton flavor and charge. The uncertainties are given in two parts, the first part is the combination of statistical (stat) and profiled (prof) uncertainties and the second part is for the experimental (ext) uncetrinaties.

The top quark mass measured inclusive of lepton flavor and charge. The uncertainties are given in two parts, the first is the combination of statistical (stat) and profiled systematic (prof) uncertainties and the second is the externalized systematic (ext) uncertainties.

Top quark mass measured inclusive of lepton flavor and for positively charged lepton.

More…

Angular analysis of the decay B$^+$ $\to$ K$^*$(892)$^+\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2021) 124, 2021.
Inspire Record 1826544 DOI 10.17182/hepdata.99387

Angular distributions of the decay B$^+$$\to$ K$^*$(892)$^+\mu^+\mu^-$ are studied using events collected with the CMS detector in $\sqrt{s} =$ 8 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 20.0 fb$^{-1}$. The forward-backward asymmetry of the muons and the longitudinal polarization of the K$^*$(892)$^+$ meson are determined as a function of the square of the dimuon invariant mass. These are the first results from this exclusive decay mode and are in agreement with a standard model prediction.

1 data table match query

The measured signal yields, FL, AFB in bins of the dimuon invariant mass squared. The first uncertainty is statistical and the second is systematic.


Version 4
Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 488, 2021.
Inspire Record 1850544 DOI 10.17182/hepdata.102525

Production cross sections of the Higgs boson are measured in the H $\to$ ZZ $\to$ $4\ell$ ($\ell$ $=$ e, $\mu$) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb$^{-1}$ is used. The signal strength modifier $\mu$, defined as the ratio of the Higgs boson production rate in the $4\ell$ channel to the standard model (SM) expectation, is measured to be $\mu$ $=$ 0.94 $\pm$ 0.07 (stat) ${}^{+0.09}_{-0.08}$ (syst) at a fixed value of $m_H$ = 125.38 GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H $\to$ $4\ell$ process is measured to be 2.84 $^{+0.23}_{-0.22}$ (stat) ${}^{+0.26}_{-0.21}$ (syst) fb, which is compatible with the SM prediction of 2.84 $\pm$ 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.

24 data tables match query

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

More…

Version 2
Measurements of angular distance and momentum ratio distributions in three-jet and Z + two-jet final states in pp collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 852, 2021.
Inspire Record 1847230 DOI 10.17182/hepdata.106642

Collinear (small-angle) and large-angle, as well as soft and hard radiations are investigated in three-jet and Z + two-jet events collected in proton-proton collisions at the LHC. The normalized production cross sections are measured as a function of the ratio of transverse momenta of two jets and their angular separation. The measurements in the three-jet and Z + two-jet events are based on data collected at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb$^{-1}$. The Z + two-jet events are reconstructed in the dimuon decay channel of the Z boson. The three-jet measurement is extended to include $\sqrt{s} =$ 13 TeV data corresponding to an integrated luminosity of 2.3 fb$^{-1}$. The results are compared to predictions from event generators that include parton showers, multiple parton interactions, and hadronization. The collinear and soft regions are in general well described by parton showers, whereas the regions of large angular separation are often best described by calculations using higher-order matrix elements.

24 data tables match query

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for small-angle radiation ($\Delta R_{23}$ < 1.0)

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for small-angle radiation ($\Delta R_{23}$ < 1.0)

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for large-angle radiation ($\Delta R_{23}$ > 1.0)

More…

Measurements of the associated production of a W boson and a charm quark in proton-proton collisions at $\sqrt{s}$ = 8 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Eur.Phys.J.C 82 (2022) 1094, 2022.
Inspire Record 1982672 DOI 10.17182/hepdata.114364

Measurements of the associated production of a W boson and a charm (c) quark in proton-proton collisions at a centre-of-mass energy of 8 TeV are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction $\sigma$(pp $\to$ W + c + X) $\mathcal{B}$(W $\to$$\ell\nu$), where $\ell$ = e or $\mu$, and the cross section ratio $\sigma$(pp $\to$ W$^+$ + c + X) / $\sigma$(pp $\to$ W$^-$ + $\mathrm{\bar{c}}$ + X) are measured inclusively and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.

6 data tables match query

Signal yields after background subtraction, efficiency*acceptance correction factors, and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet).

Measured production cross sections $\sigma(W^+ + \overline{c})$, $\sigma(W^- + c)$ and their ratio.

Measured diferential cross sections $\sigma(W^- + c) + \sigma(W^+ + \overline{c})$ as a function of the absolute value of the pseudorapidity of the lepton from the W decay.

More…

Measurements of $W^\pm Z$ production cross sections in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 092004, 2016.
Inspire Record 1426523 DOI 10.17182/hepdata.75197

This paper presents measurements of $W^\pm Z$ production in $pp$ collisions at a center-of-mass energy of 8 TeV. The gauge bosons are reconstructed using their leptonic decay modes into electrons and muons. The data were collected in 2012 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 20.3 fb$^{-1}$. The measured inclusive cross section in the detector fiducial region is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu\ \ell \ell} = 35.1 \pm$ 0.9 (stat.) $\pm 0.8$ (sys.) $\pm 0.8$ (lumi.) fb, for one leptonic decay channel. In comparison, the next-to-leading-order Standard Model expectation is 30.0 $\pm$ 2.1 fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. Limits on anomalous triple gauge boson couplings are derived from the transverse mass spectrum of the $W^\pm Z$ system. From the analysis of events with a $W$ and a $Z$ boson associated with two or more forward jets an upper limit at 95% confidence level on the $W^\pm Z$ scattering cross section of 0.63 fb, for each leptonic decay channel, is established, while the Standard Model prediction at next-to-leading order is 0.13 fb. Limits on anomalous quartic gauge boson couplings are also extracted.

48 data tables match query

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

More…

A measurement of the Higgs boson mass in the diphoton decay channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 805 (2020) 135425, 2020.
Inspire Record 1780985 DOI 10.17182/hepdata.93362

A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9 fb$^{-1}$ of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a center-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be $m_\mathrm{H} =$ 125.78 $\pm$ 0.26 GeV. This is combined with a measurement of $m_\mathrm{H}$ already performed in the H $\to$ ZZ $\to$ 4$\ell$ decay channel using the same data set, giving $m_\mathrm{H} =$ 125.46 $\pm$ 0.16 GeV. This result, when further combined with an earlier measurement of $m_\mathrm{H}$ using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of $m_\mathrm{H} =$ 125.38 $\pm$ 0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson.

1 data table match query

A summary of the mass of the Higgs boson measured in the H to GG and the H to ZZ to 4l decay channel, and for the combination of the two. These measurements have been carried out with the Run 1 and 2016 datasets as well as with them combined.