Date

Collaboration

Subject_areas

Measurements of the pp$\to$ZZ production cross section and the Z$\to 4\ell$ branching fraction, and constraints on anomalous triple gauge couplings at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 165, 2018.
Inspire Record 1625296 DOI 10.17182/hepdata.80152

Four-lepton production in proton-proton collisions, $\mathrm{pp}\to (\mathrm{Z}/ \gamma^*)(\mathrm{Z}/\gamma^*) \to 4\ell$, where $\ell = \mathrm{e}$ or $\mu$, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The ZZ production cross section, $\sigma(\mathrm{pp} \to \mathrm{Z}\mathrm{Z}) = 17.2 \pm 0.5\text{ (stat) }\pm 0.7\text{ (syst) }\pm 0.4(\mathrm{theo}) \pm 0.4\text{ (lumi)}$ pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region $60 < m_{\ell^+\ell^-} < $120 GeV, is consistent with standard model predictions. Differential cross sections are measured and are well described by the theoretical predictions. The Z boson branching fraction to four leptons is measured to be $\mathcal{B}(\mathrm{Z}\to 4\ell) = 4.8 \pm 0.2\text{ (stat) }\pm 0.2\text{ (syst) } \pm 0.1\text{ (theo) }\pm 0.1\text{ (lumi) }\times 10^{-6}$ for events with a four-lepton invariant mass in the range 80 $ < m_{4\ell} < $ 100 GeV and a dilepton mass $m_{\ell\ell} > $4 GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ$\gamma$ couplings at 95% confidence level: $-0.0012 < f_4^\mathrm{Z} < 0.0010$, $-0.0010 < f_5^\mathrm{Z} < 0.0013$, $-0.0012 < f_4^{\gamma} < 0.0013$, $-0.0012 < f_5^{\gamma} < 0.0013$.

14 data tables

The measured total ZZ cross section using 2016 data. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity and theortical sources, the second is theoretical uncertianty on the extrapolation from the selected region to the total phase space, the third is the luminosity uncertianty

The measured total ZZ cross section using 2015 and 2016. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity and theortical sources, the second is theoretical uncertianty on the extrapolation from the selected region to the total phase space, the third is the luminosity uncertianty

The measured fiducial ZZ cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity uncertianty

More…

Measurement of the $ZZ$ production cross section in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to\ell^{-}\ell^{+}\nu\bar{\nu}$ channels with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2017) 099, 2017.
Inspire Record 1494075 DOI 10.17182/hepdata.76732

A measurement of the $ZZ$ production in the $\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $\ell^{-}\ell^{+}\nu\bar{\nu}$ channels $(\ell = e, \mu)$ in proton--proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider at CERN, using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS experiment in 2012 is presented. The fiducial cross sections for $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to \ell^{-}\ell^{+}\nu\bar{\nu}$ are measured in selected phase-space regions. The total cross section for $ZZ$ events produced with both $Z$ bosons in the mass range 66 to 116 GeV is measured from the combination of the two channels to be $7.3\pm0.4\textrm{(stat)}\pm0.3\textrm{(syst)}\pm0.2\textrm{(lumi)}$ pb, which is consistent with the Standard Model prediction of $6.6^{+0.7}_{-0.6}$ pb. The differential cross sections in bins of various kinematic variables are presented. The differential event yield as a function of the transverse momentum of the leading $Z$ boson is used to set limits on anomalous neutral triple gauge boson couplings in $ZZ$ production.

8 data tables

The measured fiducial cross sections and the combined total cross section compared to the SM predictions. For experimental results, the statistical, systematic, and luminosity uncertainties are shown. For the theoretical predictions, the combined statistical and systematic uncertainty is shown.

The measured differential cross-section normalized to the bin width in values of the leading reconstructed dilepton pT for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

The measured differential cross-section normalized to the bin width in values of the number of reconstructed jets for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

More…

Measurements of four-lepton production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 753 (2016) 552-572, 2016.
Inspire Record 1394865 DOI 10.17182/hepdata.18593

The four-lepton ($4\ell$, $\ell = e, \mu$) production cross section is measured in the mass range from 80 to 1000 GeV using 20.3 fb$^{-1}$ of data in $pp$ collisions at $\sqrt{s}=8$ TeV collected with the ATLAS detector at the LHC. The $4\ell$ events are produced in the decays of resonant $Z$ and Higgs bosons and the non-resonant $ZZ$ continuum originating from $q\bar q$, $gg$, and $qg$ initial states. A total of 476 signal candidate events are observed with a background expectation of $26.2 \pm 3.6$ events, enabling the measurement of the integrated cross section and the differential cross section as a function of the invariant mass and transverse momentum of the four-lepton system. In the mass range above $180$ GeV, assuming the theoretical constraint on the $q\bar q$ production cross section calculated with perturbative NNLO QCD and NLO electroweak corrections, the signal strength of the gluon-fusion component relative to its leading-order prediction is determined to be $\mu_{gg}=2.4 \pm 1.0 (stat.) \pm 0.5 (syst.)\pm 0.8 (theory)$.

5 data tables

The measured differential cross-section distributions in unit of fb/TeV of $m_{4\ell}$ unfolded into the fiducial phase space, and compared to theory predictions. The first uncertainty is statistical, the second is systematic uncertainties.

The measured differential cross-section distributions in unit of fb/TeV of $p_{T}^{4\ell}$ unfolded into the fiducial phase space, and compared to theory predictions. The first uncertainty is statistical, the second is systematic uncertainties.

Measured cross sections in the fiducial phase space ($\sigma^\mathrm{fid}$) and extended phase space ($\sigma^\mathrm{ext}$), compared to their SM predictions. One should note that the non-resonant $gg$-induced signal cross section is only calculated at LO approximation.

More…

Measurement of the pp to ZZ production cross section and constraints on anomalous triple gauge couplings in four-lepton final states at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 740 (2015) 250-272, 2015.
Inspire Record 1298807 DOI 10.17182/hepdata.67317

A measurement of inclusive ZZ production cross section and constraints on anomalous triple gauge couplings in proton-proton collisions at sqrt(s) = 8 TeV are presented. A data sample, corresponding to an integrated luminosity of 19.6 inverse femtobarns was collected with the CMS experiment at the LHC. The measurements are performed in the leptonic decay modes ZZ to lll'l', where l = e, mu and l' = e, mu, tau. The measured total cross section, sigma(pp to ZZ) = 7.7 +/- 0.5 (stat.) +0.5-0.4 (syst.) +/- 0.4 (theo.) +/- 0.2 (lum.) pb for both Z bosons produced in the mass range 60 < m[Z] < 120 GeV, is consistent with standard model predictions. Differential cross sections are measured and well described by the theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ gamma couplings at the 95% confidence level: -0.004 < f[4,Z] < 0.004, -0.004 < f[5,Z] < 0.004, -0.005 < f[4,gamma] < 0.005, and -0.005 < f[5,gamma] < 0.005.

7 data tables

The total ZZ production cross section (P P --> Z0 Z0 X, 60GeV < mll < 120GeV) as measured in each decay channel and for the combination of all channels. The first systematic uncertainty is detector systematics, second is theoretical systematics and the third is luminosity systematic uncertainty.

Differential cross sections normalized to the fiducial cross section for the combined 4e, 4mu and 2e2mu decay channels as a function of pT for the highest pT lepton in the event.

Differential cross sections normalized to the fiducial cross section for the combined 4e, 4mu and 2e2mu decay channels as a function of pT for the Z1, where Z1 is defined as highest pT Z candidate.

More…

Measurement of ZZ production in pp collisions at sqrt(s)=7 TeV and limits on anomalous ZZZ and ZZgamma couplings with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 03 (2013) 128, 2013.
Inspire Record 1203852 DOI 10.17182/hepdata.62535

A measurement of the ZZ production cross section in proton-proton collisions at sqrt(s) = 7 TeV using data recorded by the ATLAS experiment at the Large Hadron Collider is presented. In a data sample corresponding to an integrated luminosity of 4.6 fb-1 collected in 2011, events are selected that are consistent either with two Z bosons decaying to electrons or muons or with one Z boson decaying to electrons or muons and a second Z boson decaying to neutrinos. The ZZ*->llll and ZZ->llnunu cross sections are measured in restricted phase-space regions. These results are then used to derive the total cross section for ZZ events produced with both Z bosons in the mass range 66 to 116 GeV, sigmaZZtot = 6.7 +-0.7 +0.4-0.3 +-0.3 pb, which is consistent with the Standard Model prediction of 5.89+0.22-0.18 pb calculated at next-to-leading order in QCD. The normalized differential cross sections in bins of various kinematic variables are presented. Finally, the differential event yield as a function of the transverse momentum of the leading Z boson is used to set limits on anomalous neutral triple gauge boson couplings in ZZ production.

8 data tables

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity.

The measured total cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity.

Normalized ZZ fiducial cross section (multiplied by 10^6 for readability) in bins of the leading reconstructed dilepton pT for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

More…