A Determination of the Total Width of the $\Upsilon$ (9.46) Meson

Albrecht, H. ; Childers, R. ; Darden, C.W. ; et al.
Phys.Lett.B 93 (1980) 500-504, 1980.
Inspire Record 153029 DOI 10.17182/hepdata.6334

Using the DASP detector at the DESY storage ring DORIS we have continued measuring e + e − annihilations near and on the ϒ(9.46) resonance. From the cross sections for e + e − → μ + μ − and e + e − → hadrons we obtain a μ + μ − branching ratio for the ϒ(9.46) of (2.9 ± 1.3 ± 0.5) %, a leptonic width г ee = (1.35 ± 0.11 ± 0.22) keV and a total width of (47 −15 +37 keV.

1 data table match query

No description provided.


Properties of hadronic Z decays and test of QCD generators

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 55 (1992) 209-234, 1992.
Inspire Record 334577 DOI 10.17182/hepdata.1420

Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.

41 data tables match query

Sphericity distribution.

Sphericity distribution.

Aplanarity distribution.

More…

The Influence of Fragmentation Models on the Determination of the Strong Coupling Constant in $e^+ e^-$ Annihilation Into Hadrons

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Nucl.Phys.B 218 (1983) 269-288, 1983.
Inspire Record 179447 DOI 10.17182/hepdata.8172

Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.

3 data tables match query

DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).

DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).

No description provided.


Topology of Hadronic $e^+ e^-$ Annihilation Events at 22-{GeV} and 34-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Field, J.H. ; et al.
Phys.Lett.B 110 (1982) 329-334, 1982.
Inspire Record 169195 DOI 10.17182/hepdata.30996

The topology of hadronic e + e − annihilation events has been analysed using the sphericity tensor and a cluster method. Comparison with quark models including gluon bremsstrahlung yields good agreement with the data. The strong-coupling constant is determined in 1st order QCD to be α S =0.19±0.04 (stat) ± 0.04 (syst.) at 22 GeV and α S =0.16 ±0.02± 0.03 at 34 GeV. The differential cross section with respect to the energy fraction carried by the most energetic parton agrees with the prediction of QCD, but cannot be reproduced by a scalar gluon model. These results are stable against variations of the transverse momentum distribution of the fragmentation function within the quoted errors.

1 data table match query

No description provided.


Determination of the QCD scale parameter Lambda (ms) with QCD cascade on the basis of the next-to-leading logarithmic approximation

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Phys.Lett.B 240 (1990) 232-236, 1990.
Inspire Record 296684 DOI 10.17182/hepdata.29690

The relative production ratio of 3-jet events to the total number of hadronic events was studied in e + e − annihilations at centre-of-mass energies between 54 and 61.4 GeV. The QCD scale parameter has been determined to be Λ MS =254 −47 +55 ±56 MeV on the basis of a QCD cascade with the next-to-leading logarithmic approximation.

2 data tables match query

Data are uncorrected for initial radiation, detector effects, and quark hadronization.

LAMBDA-MSBAR determined from the 3-jet ratio.


A Study of Multi-Jet Events in e+ e- Annihilation

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 97 (1980) 459-464, 1980.
Inspire Record 155318 DOI 10.17182/hepdata.27141

A multi-jet analysis of hadronic final states from e + e − annihilation in the energy range 27 < E cm < 32GeV is presented. The analysis uses a cluster method to identify the jets in a hadronic event. The distribution of the number of jets per event is compared with several models. From the number of identified coplanar three-jet events the strong coupling constant is determined to beα S = 0.15 ± 0.03 (stat. error) ± 0.02 (syst. error). The inferred energy distribution of the most energetic parton is in good agreement with the first-order QCD prediction. A scalar-gluon model is strongly disfavoured. Higher-twist contributions to the three-jet sample are found to be small.

1 data table match query

No description provided.


Measurement of the strong coupling constant alpha-s for bottom quarks at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 271 (1991) 461-467, 1991.
Inspire Record 318981 DOI 10.17182/hepdata.38288

We have measured the ratio of the strong coupling constants α s for bottom quarks and light quarks at the Z 0 resonance, in order to test the flavour independence of the strong interaction. The coupling strength α s has been determined from the fraction of events with three jets, measured for a sample of all hardronic events, and for inclusive muon and electron events. The b purity is evaluated to be 22% for the first data set and 87% for the inclusive lepton sample. We find α s ( b ) α s ( udsc ) =1.00± 0.05 ( stat. )±0.06 ( syst. ) .

1 data table match query

No description provided.


A Test of QCD based on three jet events from Z0 decays

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 263 (1991) 551-562, 1991.
Inspire Record 315954 DOI 10.17182/hepdata.38291

We present a study of 43 000 3-jet events from Z 0 boson decays. Both the measured jet energy distributions and the event orientation are reproduced by second order QCD. An alternative model with scalar gluons fails to describe the data.

1 data table match query

Jets are ordered according their energy: E1 > E2 > E3.


Measurement of eta production in two and three jet events from hadronic Z decays at LEP

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Phys.Lett.B 371 (1996) 126-136, 1996.
Inspire Record 404602 DOI 10.17182/hepdata.48038

The inclusive production of η mesons has been studied using 1.6 million hadronic Z decays collected with the L3 detector. The η multiplicity per event, the multiplicity for two-jet and three-jet events separately, and the multiplicity in each jet have been measured and compared with the predictions of different Monte Carlo programs. The momentum spectra of η in each jet have also been measured. We observe that the measured η momentum spectrum in quark-enriched jets agrees well with the Monte Carlo prediction while in gluon-enriched jets it is harder than that predicted by the Monte Carlo models.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

A measurement of the b-quark mass from hadronic Z decays.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 18 (2000) 1-13, 2000.
Inspire Record 531468 DOI 10.17182/hepdata.49909

Hadronic Z decay data taken with the ALEPH detector at LEP1 are used to measure the three-jet rate as well as moments of various event-shape variables. The ratios of the observables obtained from b-tagged events and from an inclusive sample are determined. The mass of the b quark is extracted from a fit to the measured ratios using a next-to-leading order prediction including mass effects. Taking the first moment of the y3 distribution, which is the observable with the smallest hadronization corrections and systematic uncertainties, the result is: mb(MZ) = [3.27+-0.22(stat) +-0.22(exp)+-0.38(had)+-0.16(theo)] GeV/c2. The measured ratio is alternatively employed to test the flavour independence of the strong coupling constant for b and light quarks.

1 data table match query

No description provided.