Measurement of $e^+ e^- \to \mu^+ \mu^-$ Charge Asymmetry

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 48 (1982) 1701, 1982.
Inspire Record 177308 DOI 10.17182/hepdata.3116

The measurement of the nonelectromagnetic forward-backward charge asymmetry in the reaction e+e−→μ+μ− at s∼34.6 GeV and in the angular region 0<|cosθ|<0.8 is reported. With a systematic error less than 1%, we observe an asymmetry of (-8.1±2.1)%. This is in agreement with the standard electroweak theory prediction of (-7.6±0.6)%. The weak-current coupling constants are also reported.

4 data tables match query

SEE PRL 55, 665 FOR DISTRIBUTIONS AT 34.6 GEV AND ABOVE.

SEE PRL 55, 665 FOR CROSS SECTION VALUES AND FORWARD BACKWARD ASYMMETRY.

No description provided.

More…

Measurement of the forward $Z$ boson production cross-section in $pp$ collisions at $\sqrt{s}$ = 7 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 08 (2015) 039, 2015.
Inspire Record 1373300 DOI 10.17182/hepdata.2114

A measurement of the production cross-section for $Z$ bosons that decay to muons is presented. The data were recorded by the LHCb detector during $pp$ collisions at a centre-of-mass energy of 7 TeV, and correspond to an integrated luminosity of 1.0 fb$^{-1}$. The cross-section is measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$ with transverse momenta $p_{T} > 20$ GeV/c. The dimuon mass is restricted to $60 < M_{\mu^{+}\mu^{-}} < 120$ GeV/c$^{2}$. The measured cross-section is $$\sigma_{Z\rightarrow\mu^{+}\mu^{-}} = (76.0 \pm 0.3 \pm 0.5 \pm 1.0 \pm 1.3) \, \text{pb}$$ where the uncertainties are due to the sample size, systematic effects, the beam energy and the luminosity. This result is in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. The cross-section is also measured differentially as a function of kinematic variables of the $Z$ boson. Ratios of the production cross-sections of electroweak bosons are presented using updated LHCb measurements of $W$ boson production. A precise test of the Standard Model is provided by the measurement of the ratio $$\frac{\sigma_{W^{+}\rightarrow\mu^{+}\nu_{\mu}} + \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}_{\mu}}}{\sigma_{Z\rightarrow\mu^{+}\mu^{-}}} = 20.63\pm0.09\pm0.12\pm0.05,$$ where the uncertainty due to luminosity cancels.

11 data tables match query

Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.

Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.

Inclusive cross-section for $Z$ boson production in bins of PHI*. The uncertainties are statistical, systematic, beam and luminosity.

More…

Measurement of the forward $W$ boson cross-section in $pp$ collisions at $\sqrt{s} = 7 {\rm \, TeV}$

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 12 (2014) 079, 2014.
Inspire Record 1311488 DOI 10.17182/hepdata.11760

A measurement of the inclusive $W \to \mu\nu$ production cross-section using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 7 {\rm \, TeV}$ is presented. The analysis is based on an integrated luminosity of about $1.0 {\rm \, fb}^{-1}$ recorded with the LHCb detector. Results are reported for muons with a transverse momentum greater than $20 {\rm \, Ge\kern -0.1em V\!/}c$ and pseudorapidity between 2.0 and 4.5. The $W^{+}$ and $W^{-}$ production cross-sections are measured to be $$\sigma_{W^{+} \to \mu^{+}\nu} = 861.0 \pm 2.0 \pm 11.2 \pm 14.7 {\rm \, pb},$$ $$\sigma_{W^{-} \to \mu^{-}\overline{\nu}} = 675.8 \pm 1.9 \pm 8.8 \pm 11.6 {\rm \, pb},$$ where the first uncertainty is statistical, the second is systematic and the third is due to the luminosity determination. Cross-section ratios and differential distributions as functions of the muon pseudorapidity are also presented. The ratio of $W^{+}$ to $W^{-}$ cross-sections in the same fiducial kinematic region is determined to be $$\frac{\sigma_{W^{+} \to \mu^{+}\nu}}{\sigma_{W^{-} \to \mu^{-}\overline{\nu}}} = 1.274 \pm 0.005 \pm 0.009,$$ where the uncertainties are statistical and systematic, respectively. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.

4 data tables match query

Correction for final state radiation for $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\bar{\nu}$ in bins of muon pseudorapidity. No loss due FSR is observed for $W^-$ in the last pseudorapidity bin because of lack of statistics.

Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic and luminosity.

Ratio of $W^+$ to $W^-$ cross-section in bins of muon pseudorapidity. The uncertainties are statistical and systematic.

More…

Measurement of forward $W$ and $Z$ boson production in $pp$ collisions at $\sqrt{s} = 8\mathrm{\,Te\kern -0.1em V}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 01 (2016) 155, 2016.
Inspire Record 1406555 DOI 10.17182/hepdata.71419

Measurements are presented of electroweak boson production using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 8\mathrm{\,Te\kern -0.1em V}$. The analysis is based on an integrated luminosity of $2.0\mathrm{\,fb}^{-1}$ recorded with the LHCb detector. The bosons are identified in the $W\rightarrow\mu\nu$ and $Z\rightarrow\mu^{+}\mu^{-}$ decay channels. The cross-sections are measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$, with transverse momenta $p_{\rm T} > 20{\mathrm{\,Ge\kern -0.1em V\!/}c}$ and, in the case of the $Z$ boson, a dimuon mass within $60 < M_{\mu^{+}\mu^{-}} < 120{\mathrm{\,Ge\kern -0.1em V\!/}c^{2}}$. The results are \begin{align*} \sigma_{W^{+}\rightarrow\mu^{+}\nu} &= 1093.6 \pm 2.1 \pm 7.2 \pm 10.9 \pm 12.7{\rm \,pb} \, , \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}} &= \phantom{0}818.4 \pm 1.9 \pm 5.0 \pm \phantom{0}7.0 \pm \phantom{0}9.5{\rm \,pb} \, , \sigma_{Z\rightarrow\mu^{+}\mu^{-}} &= \phantom{00}95.0 \pm 0.3 \pm 0.7 \pm \phantom{0}1.1 \pm \phantom{0}1.1{\rm \,pb} \, , \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. The evolution of the $W$ and $Z$ boson cross-sections with centre-of-mass energy is studied using previously reported measurements with $1.0\mathrm{\,fb}^{-1}$ of data at $7\mathrm{\,Te\kern -0.1em V}$. Differential distributions are also presented. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.

23 data tables match query

Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic, beam and luminosity.

Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.

Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.

More…

Measurement of $e^+ e^- \to \mu^+ \mu^-$: A Test of Electroweak Theories

The Mark-J collaboration Adeva, B. ; Becker, U. ; Becker-Szendy, R. ; et al.
Phys.Rev.Lett. 55 (1985) 665, 1985.
Inspire Record 214607 DOI 10.17182/hepdata.3237

We use the reaction e+e−→μ+μ−, in the Mark J detector at the DESY high-energy e+e− collider PETRA, to test the standard electroweak theory and find good agreement. We also set limits on the parameters of several extended gauge theories.

6 data tables match query

CROSS SECTION MEASUREMENT RELATIVE TO PREDICTED QED CROSS SECTION.

FORWARD-BACKWARD ASYMMETRY. THE SYSTEMATIC ERROR IN THE ASYMMETRY IS <0.5 PCT.

ANGULAR DISTRIBUTIONS NOT GIVEN IN PAPER. SUPPLIED BY E.DEFFUR.

More…

Electroweak studies in e+ e- collisions: 12 < s**(1/2) < 46.78 GeV

The MARK J collaboration Adeva, B. ; Anderhub, H. ; Ansari, S. ; et al.
Phys.Rev.D 38 (1988) 2665-2678, 1988.
Inspire Record 274887 DOI 10.17182/hepdata.23272

The Mark J Collaboration at the DESY e+e− collider PETRA presents results on the electroweak reactions e+e−→μ+μ−τ+τ−,μ+μ−γ, and e+e−μ+μ−. The c.m. energy range is 12 to 46.78 GeV. In the μ+μ− and τ+τ− channels the total cross sections and the forward-backward asymmetries are reported and compared with other experiments. The results are in excellent agreement with the standard model. The weak-neutral-current vector and axial-vector coupling constants are determined. The values for muons and τ’s are compatible with universality and with the predictions of the standard model. In the μ+μ−γ channel, all measured distributions, including the forward-backward muon asymmetry, are in excellent agreement with the electroweak theory. Our data on the two-photon process, e+e−μ+μ−, agrees with QED to order α4 over the entire energy range and the Q2 range from 0.7 to 166 GeV2.

9 data tables match query

SIG(QED) = 86.85/S.

No description provided.

No description provided.

More…

Spin asymmetry in muon - proton deep inelastic scattering on a transversely polarized target

The Spin Muon (SMC) collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 336 (1994) 125-130, 1994.
Inspire Record 375478 DOI 10.17182/hepdata.48344

We measured the spin asymmetry in the scattering of 100 GeV longitudinally-polarized muons on transversely polarized protons. The asymmetry was found to be compatible with zero in the kinematic range $0.006<x<0.6$, $1<Q~2<30\,\mbox{GeV}~2$. {}From this result we derive the upper limits for the virtual photon--proton asymmetry $A_2$, and for the spin structure function $g_2$. For $x<0.15$, $A_2$ is significantly smaller than its positivity limit $\sqrt{R}$.

2 data tables match query

No description provided.

Nucleon spin structure function g2.


Spin asymmetries A(1) and structure functions g1 of the proton and the deuteron from polarized high energy muon scattering.

The Spin Muon collaboration Adeva, B. ; Akdogan, T. ; Arik, E. ; et al.
Phys.Rev.D 58 (1998) 112001, 1998.
Inspire Record 471981 DOI 10.17182/hepdata.49492

We present the final results of the spin asymmetries A1 and the spin structure functions g1 of the proton and the deuteron in the kinematic range 0.0008<x<0.7 and 0.2<Q2<100GeV2. For the determination of A1, in addition to the usual method which employs inclusive scattering events and includes a large radiative background at low x, we use a new method which minimizes the radiative background by selecting events with at least one hadron as well as a muon in the final state. We find that this hadron method gives smaller errors for x<0.02, so it is combined with the usual method to provide the optimal set of results.

12 data tables match query

The virtual photon proton asymmetries.

The virtual photon deuteron asymmetries.

The virtual photon proton asymmetries in smaller X and Q**2 bins. bins. Errors are statistical only.

More…

The spin-dependent structure function g1(x) of the proton from polarized deep-inelastic muon scattering.

The Spin Muon (SMC) collaboration Adeva, B. ; Arik, E. ; Arvidson, A. ; et al.
Phys.Lett.B 412 (1997) 414-424, 1997.
Inspire Record 448371 DOI 10.17182/hepdata.47369

We present a new measurement of the virtual photon proton asymmetry A 1 p from deep inelastic scattering of polarized muons on polarized protons in the kinematic range 0.0008 < x < 0.7 and 0.2 < Q 2 < 100 GeV 2 . With this, the statistical uncertainty of our measurement has improved by a factor of 2 compared to our previous measurements. The spin-dependent structure function g 1 p is determined for the data with Q 2 > 1 GeV 2 . A perturbative QCD evolution in next-to-leading order is used to determine g 1 p ( x ) at a constant Q 2 . At Q 2 = 10 GeV 2 we find, in the measured range, ∫ 0.003 0.7 g 1 P (x) d x=0.139±0.006 ( stat ) ±0.008 ( syst ) ±0.006( evol ) . The value of the first moment Г 1 P = ∫ 0 1 g 1 p (x) d x of g 1 p depends on the approach used to describe the behaviour of g 1 p at low x . We find that the Ellis-Jaffe sum rule is violated. With our published result for Γ 1 d we confirm the Bjorken sum rule with an accuracy of ≈ 15% at the one standard deviation level.

4 data tables match query

The virtual photon proton asymmetries. Only statistical errors are given.

The virtual photon proton asymmetries A1 and the spin dependent structure function G1.

The spindependent tructure function G1 evolved to Q2 = 10 GEV**2.. The second DSYS for this indicates the uncertainty in the QCD evolution.

More…

A Determination of electroweak parameters from Z0 ---> mu+ mu- (gamma)

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 247 (1990) 473-480, 1990.
Inspire Record 297172 DOI 10.17182/hepdata.29622

We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.

4 data tables match query

No description provided.

Forward backward charge asymmetry.

No description provided.

More…