Version 2
Charged-particle distributions at low transverse momentum in $\sqrt{s}$=13 TeV pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 502, 2016.
Inspire Record 1467230 DOI 10.17182/hepdata.73907

Measurements of distributions of charged particles produced in proton-proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 $\mu$b$^{-1}$. The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.

20 data tables

The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The extrapolated ($\tau > 30$ ps) average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

More…

Charged-particle distributions in $pp$ interactions at $\sqrt{s}=8$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 403, 2016.
Inspire Record 1426695 DOI 10.17182/hepdata.73012

This paper presents measurements of distributions of charged particles which are produced in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector at the LHC. A special dataset recorded in 2012 with a small number of interactions per beam crossing (below 0.004) and corresponding to an integrated luminosity of $160 \mathrm{\mu b^{-1}}$ was used. A minimum-bias trigger was utilised to select a data sample of more than 9 million collision events. The multiplicity, pseudorapidity, and transverse momentum distributions of charged particles are shown in different regions of kinematics and charged-particle multiplicity, including measurements of final states at high multiplicity. The results are corrected for detector effects and are compared to the predictions of various Monte Carlo event generator models which simulate the full hadronic final state.

15 data tables

Central primary-charged-particle density 1/Nev dNch/deta at eta = 0 for five different phase spaces. The results are given for the fiducial definition tau > 300 ps, as well as for the previously used fiducial definition tau > 30 ps using an extrapolation factor of 1.012 +- 0.004 (for pT > 100 MeV) or 1.025 +- 0.008 (for pT > 500 MeV), which accounts for the fraction of charged strange baryons predicted by Epos LHC simulation.

Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 8000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 8000 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Charged-particle distributions in $\sqrt{s}=13$ TeV $pp$ interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 758 (2016) 67-88, 2016.
Inspire Record 1419652 DOI 10.17182/hepdata.72491

Charged-particle distributions are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 $\mu$b$^{-1}$, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.

18 data tables

The average charged-particle multiplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The extrapolated average charged-particle multiplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

Charged-particle multiplicities in proton-proton collisions at a centre-of-mass energy of 13000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Measurement of charged particle multiplicities and densities in $pp$ collisions at $\sqrt{s}=7\;$TeV in the forward region

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Eur.Phys.J.C 74 (2014) 2888, 2014.
Inspire Record 1281685 DOI 10.17182/hepdata.63498

Charged particle multiplicities are studied in proton-proton collisions in the forward region at a centre-of-mass energy of $\sqrt{s} = 7\;$TeV with data collected by the LHCb detector. The forward spectrometer allows access to a kinematic range of $2.0<\eta<4.8$ in pseudorapidity, momenta down to $2\;$GeV/$c$ and transverse momenta down to $0.2\;$GeV/$c$. The measurements are performed using minimum-bias events with at least one charged particle in the kinematic acceptance. The results are presented as functions of pseudorapidity and transverse momentum and are compared to predictions from several Monte Carlo event generators.

5 data tables

Charged particle density as function of pseudorapidity for events with at least one prompt final state charged particle in fiducial range. The first quoted uncertainty is statistical and the second systematic.

Charged particle density as function of transverse momentum for events with at least one prompt final state charged particle in fiducial range. The first quoted uncertainty is statistical and the second systematic.

Observed charged particle multiplicity distribution in the full kinematic range of the analysis. The first quoted uncertainty is statistical and the second systematic.

More…

Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 105 (2010) 022002, 2010.
Inspire Record 855299 DOI 10.17182/hepdata.56006

Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies.

5 data tables

Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 0.1, 0.3, 0.5 and 0.7 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.

Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 0.9, 1.1, 1.3 and 1.5 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.

Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 1.7, 1.9, 2.1 and 2.3 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.

More…

Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 0.9 and 2.36 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 02 (2010) 041, 2010.
Inspire Record 845323 DOI 10.17182/hepdata.54829

Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.

8 data tables

Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 0.1, 0.3, 0.5 and 0.7 for centre-of-mass energy 900 GeV.

Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 0.9, 1.1, 1.3 and 1.5 for centre-of-mass energy 900 GeV.

Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 1.7, 1.9, 2.1 and 2.3 for centre-of-mass energy 900 GeV.

More…

Measurement of the Underlying Event Activity in Proton-Proton Collisions at 0.9 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 70 (2010) 555-572, 2010.
Inspire Record 857644 DOI 10.17182/hepdata.55126

A measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged hadron production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged hadrons with pseudorapidity eta < 2, p_T > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object.

7 data tables

Average multiplicity of charged particles per unit of pseudorapidity as a function of pseudorapidity for events with leading track-jet transverse momenta > 1 and > 3 GeV. Statistical errors only.

Average scalar sum of the transverse momenta of charged particles per unit of pseusdorapidity and per radian as a function of DELTA(PHI) for events with leading track-jet transverse momenta > 1 and > 2 GeV. Statistical errors only. Typical systematic error of 1.8 PCT at a leading track-jet PT of 3.5 GeV.

The average multiplicity and average scalar sum of transverse momenta of charge particles per unit of pseudorapidity and per radian as a function of the leading track transverse momenta. Statistical errors only. Typical systematic error of 1.8 PCT at a leading track-jet PT of 3.5 GeV.

More…