Limitations on Production Cross-section of Neutral Penetrating Particles in 70-{GeV}/c $p N$ Collisions

Agakishiev, G.N. ; Vovenko, A.S. ; Goryachev, V.N. ; et al.
Sov.J.Nucl.Phys. 32 (1980) 345, 1980.
Inspire Record 153106 DOI 10.17182/hepdata.41494

None

3 data tables match query

No description provided.

No description provided.

No description provided.


Influence of the collision centrality upon negative particle production in d C, alpha C and C C interactions at 4.2 GeV/c per nucleon

Simic, L. ; Backovic, S. ; Agakishiev, G.N. ; et al.
Z.Phys.C 48 (1990) 577-580, 1990.
Inspire Record 306570 DOI 10.17182/hepdata.15127

The influence of collision centrality upon spectra of negative particles produced indC, αC and CC interactions at 4.2 GeV/c per nucleon is studied. The netcharge of secondary particles is used as a measure of collision centrality. Comparison with the nucleon-nucleon collisions and with Dubna intranuclear cascade model is presented. The main features of the momentum, rapidity and angular spectra are compatible with the independent, nucleon-nucleon collision picture. Only in thepT spectra, the observed particle excess, for low and highpT, is inconsistent with this approach. In contrast to the pions, the spectra of protons are more sensitive to the collision centrality.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

$J/\psi$ production cross section and its dependence on charged-particle multiplicity in $p+p$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 786 (2018) 87-93, 2018.
Inspire Record 1672453 DOI 10.17182/hepdata.85057

We present a measurement of inclusive $J/\psi$ production at mid-rapidity ($|y|<1$) in $p+p$ collisions at a center-of-mass energy of $\sqrt{s}$ = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The differential production cross section for $J/\psi$ as a function of transverse momentum ($p_T$) for $0

3 data tables match query

Top$:$ J/$\psi$ cross section times branching ratio as a function of pT in p+p collisions at $\sqrt{s_{NN}}$ = 200 GeV. Solid circles are from this analysis for |y| < 1; open circles and blue squares are the published results for |y| < 1 from STAR; triangles are the published results for |y| < 0.35 from PHENIX. Bars and boxes are statistical and systematic uncertainties, respectively. The curves are CEM (green), NLO NRQCD A (orange) [4], CGC + NRQCD (blue) , and NLO NRQCD B (magenta) theoretical calculations, respectively. Bottom$:$ ratios of these results with respect to the central value from this analysis.

The corrected $n_{ch}$ distributions at mid-rapidity (|$\eta$| < 1) for MB events (open circles) and J/$\psi$ events with J/$\psi$ $p_{T}$ greater than 0 (purple circles), 1.5 (blue squares), and 4 GeV/c (red triangles) in p+p collisions at $\sqrt{s}$ = 200 GeV. The fit function is a negative binomial function. Bars and boxes are statistical and systematic uncertainties, respectively.

The multiplicity dependence of J/$\psi$ production in p+p collisions at $\sqrt{s}$ = 200 GeV. Purple circles, blue squares, and red triangles represent the results for J/$\psi$ with $p_{T}$ greater than 0, 1.5, and 4 GeV/c, respectively. Bars and open boxes are statistical and systematic uncertainties, respectively. The ALICE result is shown in the left panel. The purple, blue and red bands in the middle panel are generated from PYTHIA8 for J/$\psi$ with $p_{T}$ greater than 0, 1.5, and 4 GeV/c, respectively. The blue and red bands in the right panel are from EPOS3 model calculations for D$^{0}$ with 2 < $p_{T}$ < 4 and 4 < $p_{T}$ < 8 GeV/c, respectively, while the green curve is from the Percolation model for J/$\psi$ with $p_{T}$ > 0 GeV/c.


Measurements of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ Lifetimes and Yields in Au+Au Collisions in the High Baryon Density Region

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 202301, 2022.
Inspire Record 1946124 DOI 10.17182/hepdata.114372

We report precision measurements of hypernuclei ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ lifetimes obtained from Au+Au collisions at \snn = 3.0 GeV and 7.2 GeV collected by the STAR experiment at RHIC, and the first measurement of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ mid-rapidity yields in Au+Au collisions at \snn = 3.0 GeV. ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be $221\pm15(\rm stat.)\pm19(\rm syst.)$ ps for ${}^3_\Lambda \rm{H}$ and $218\pm6(\rm stat.)\pm13(\rm syst.)$ ps for ${}^4_\Lambda \rm{H}$. The $p_T$-integrated yields of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of ${}^4_\Lambda \rm{H}$ is different for 0--10% and 10--50% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the ${}^3_\Lambda \rm{H}$ yield well, while underestimating the ${}^4_\Lambda \rm{H}$ yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.

17 data tables match query

The measured $^{3}_{\Lambda}$H and $^{4}_{\Lambda}$H lifetimes from STAR (2021)

B.R. times dN/dy of $^{3}_{\Lambda}$H vs y in 3 GeV 0-10% Au+Au collisions

B.R. times dN/dy of $^{4}_{\Lambda}$H vs y in 3 GeV 0-10% Au+Au collisions

More…

Beam-energy dependence of identified two-particle angular correlations in Au+Au collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 101 (2020) 014916, 2020.
Inspire Record 1740846 DOI 10.17182/hepdata.105909

The two-particle angular correlation functions, $R_2$, of pions, kaons, and protons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV were measured by the STAR experiment at RHIC. These correlations were measured for both like-sign and unlike-sign charge combinations and versus the centrality. The correlations of pions and kaons show the expected near-side ({\it i.e.}, at small relative angles) peak resulting from short-range mechanisms. The amplitudes of these short-range correlations decrease with increasing beam energy. However, the proton correlation functions exhibit strong anticorrelations in the near-side region. This behavior is observed for the first time in an A+A collision system. The observed anticorrelation is $p_{T}$-independent and decreases with increasing beam energy and centrality. The experimental results are also compared to the Monte Carlo models UrQMD, Hijing, and AMPT.

44 data tables match query

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 7.7 GeV

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 11.5 GeV

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 14.5 GeV

More…

Underlying event measurements in $p$+$p$ collisions at $\sqrt{s}= 200 $ GeV at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 101 (2020) 052004, 2020.
Inspire Record 1771348 DOI 10.17182/hepdata.95537

Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $\sqrt{s}$=200 GeV is studied with the STAR detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction ("Toward"), opposite to the leading jet ("Away"), and perpendicular to the leading jet ("Transverse"). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $\langle p_{T}\rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|\eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $\langle p_{T}\rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.

6 data tables match query

Average charged particle multiplicity densities for Toward, Away, and Transverse regions as functions of the leading jet pT, with charged particle pT>0.2 GeV/c. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune. The solid curves are the Toward region. The sparse dashed curves are the Away region. The dense dashed curves are the Transverse region.

Transverse region average charged particle densities for pT>0.2 GeV/c (open symbols) and pT>0.5 GeV/c (filled symbols). Simulations are also shown as curves. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune.

Charged particle <pT> for Toward, Away, and Transverse regions as functions of the leading jet pT, with charged particle pT>0.2 GeV/c. Simulations are also shown as curves. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune. Note the three curves overlap for the Transverse region calculations.

More…

Measurement of away-side broadening with self-subtraction of flow in Au+Au collisions at $\sqrt{s_{_\mathrm{NN}}}=200$ GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Chin.Phys.C 44 (2020) 104001, 2020.
Inspire Record 1740989 DOI 10.17182/hepdata.95119

High transverse momentum ($p_T$) particle production is suppressed due to parton (jet) energy loss in the hot dense medium created in relativistic heavy-ion collisions. Redistribution of energy at low-to-modest $p_T$ has been elusive to measure because of large anisotropic backgrounds. We report a data-driven method for background evaluation and subtraction, exploiting the away-side pseudorapidity gaps, to measure the jetlike correlation shape in Au+Au collisions at $\sqrt{s_{_\mathrm{NN}}}=200$ GeV with the STAR experiment. The correlation shapes, for trigger particle $p_T>3$ GeV/$c$ and various associated particle $p_T$ ranges within $0.5<p_T<10$ GeV/$c$, are consistent with Gaussians and their widths are found to increase with centrality. The results indicate jet broadening in the medium created in central heavy-ion collisions.

7 data tables match query

Distributions of the recoil momentum within 0.5<\eta<1 (Px|_{0.5}^{1}) from high-pT trigger particles of 3<pT_Trig<10 GeV/c in 50-80% peripheral collisions

Distributions of the recoil momentum within 0.5<\eta<1 (Px|_{0.5}^{1}) from high-pT trigger particles of 3<pT_Trig<10 GeV/c in 0-10% central collisions

Dihadron azimuthal correlations in close-region and far-region for 3<pT_Trig<10 GeV/c and 1<pT_Assoc<2 GeV/c in 10-30% Au+Au collisions at \sNN=200 GeV

More…

Measurement of D$^0$-meson + hadron two-dimensional angular correlations in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 014905, 2020.
Inspire Record 1767419 DOI 10.17182/hepdata.95209

Open heavy flavor hadrons provide unique probes of the medium produced in ultra-relativistic heavy-ion collisions. Due to their increased mass relative to light-flavor hadrons, long lifetime, and early production in hard-scattering interactions, they provide access to the full evolution of the partonic medium formed in heavy-ion collisions. This paper reports two-dimensional (2D) angular correlations between neutral $D$-mesons and unidentified charged particles produced in minimum-bias Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. $D^0$ and $\bar{D}^0$ mesons are reconstructed via their weak decay to $K^{\mp} \pi^{\pm}$ using the Heavy Flavor Tracker (HFT) in the Solenoidal Tracker at RHIC (STAR) experiment. Correlations on relative pseudorapidity and azimuth $(\Delta\eta,\Delta\phi)$ are presented for peripheral, mid-central and central collisions with $D^0$ transverse momentum from 2 to 10 GeV/$c$. Attention is focused on the 2D peaked correlation structure near the triggered $D^0$-meson, the {\em near-side} (NS) peak, which serves as a proxy for a charm-quark containing jet. The correlated NS yield of charged particles per $D^0$-meson and the 2D widths of the NS peak increase significantly from peripheral to central collisions. These results are compared with similar correlations using unidentified charged particles, consisting primarily of light-flavor hadrons, at similar trigger particle momenta. Similar per-trigger yields and widths of the NS correlation peak are observed. The present results provide additional evidence that $D^0$-mesons undergo significant interactions with the medium formed in heavy-ion collision and show, for the first time, significant centrality evolution of the NS 2D peak in the correlations of particles associated with a heavy-flavor hadron produced in these collisions.

4 data tables match query

Amplitude of the quadrupole term, A_Q, extracted from the fitting of the correlations, presented as a function of centrality.

Width of the near-side gaussian on the delPhi coordinate extracted from the fitting of the correlations, presented as a function of centrality.

Width of the near-side gaussian on the delEta coordinate extracted from the fitting of the correlations, presented as a function of centrality.

More…

Measurements of $W$ and $Z/\gamma^*$ cross sections and their ratios in $p+p$ collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 103 (2021) 012001, 2021.
Inspire Record 1829350 DOI 10.17182/hepdata.99055

We report on the $W$ and $Z/\gamma^*$ differential and total cross sections as well as the $W^+$/$W^-$ and $(W^+ + W^-)$/$(Z/\gamma^*)$ cross-section ratios measured by the STAR experiment at RHIC in $p+p$ collisions at $\sqrt{s} = 500$ GeV and $510$ GeV. The cross sections and their ratios are sensitive to quark and antiquark parton distribution functions. In particular, at leading order, the $W$ cross-section ratio is sensitive to the $\bar{d}/\bar{u}$ ratio. These measurements were taken at high $Q^2 \sim M_W^2,M_Z^2$ and can serve as input into global analyses to provide constraints on the sea quark distributions. The results presented here combine three STAR data sets from 2011, 2012, and 2013, accumulating an integrated luminosity of 350 pb$^{-1}$. We also assess the expected impact that our $W^+/W^-$ cross-section ratios will have on various quark distributions, and find sensitivity to the $\bar{u}-\bar{d}$ and $\bar{d}/\bar{u}$ distributions.

7 data tables match query

Differential cross sections, $d\sigma^{fid}_{W^+}/d\eta_{e^+}$, binned in $e^+$ pseudorapidity bins, requiring that $-1 < \eta_e < 1.5$ and $25$ GeV $< E^e_{T} < 50$ GeV. The values labeled 'stat.' and 'eff.' represent the statistical uncertainty and the systematic uncertainty estimated from the efficiencies, respectively. The later is dominated by the 5\% uncertainty in the tracking efficiency, which is common to all the measurements. The value 'sys.' includes all remaining systematic uncertainties, with the exception of the luminosity. The 9\% uncertainty associated with the luminosity measurement is labeled as 'lumi'.

Differential cross sections, $d\sigma^{fid}_{W^-}/d\eta_{e^-}$, binned in $e^-$ pseudorapidity bins, requiring that $-1 < \eta_e < 1.5$ and $25$ GeV $< E^e_{T} < 50$ GeV. The values labeled ``stat.' and ``eff.' represent the statistical uncertainty and the systematic uncertainty estimated from the efficiencies, respectively. The later is dominated by the 5\% uncertainty in the tracking efficiency, which is common to all the measurements. The value ``sys.' includes all remaining systematic uncertainties, with the exception of the luminosity. The 9\% uncertainty associated with the luminosity measurement is labeled as 'lumi'.

Differential cross sections, $d\sigma^{fid}_{Z}/dy_Z$, binned in rapidity bins, requiring that $|\eta_e|<1$, $|y_Z| < 1$, $p^e_T > 15$ GeV, and $ 70$ GeV $< M_Z < 110$ GeV. The values labeled 'stat.' and 'eff.' represent the statistical uncertainty and the systematic uncertainty estimated from the efficiencies, respectively. The later is dominated by the 10\% uncertainty in the tracking efficiency, which is common to all the measurements. The value 'sys.' includes all remaining systematic uncertainties, with the exception of the luminosity. The 9\% uncertainty associated with the luminosity measurement is labeled as 'lumi'.

More…

Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 784 (2018) 26-32, 2018.
Inspire Record 1669807 DOI 10.17182/hepdata.100168

New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient \vone, are presented for transverse momenta $\mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $\mathrm{\sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $\mathrm{\sqrt{s_{_{NN}}}}$, centrality and $\mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $\mathrm{p_T}$ dependencies of $\mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $\mathrm{v_3}$, could serve as constraints for initial-state models. The $\mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.

5 data tables match query

$v_{11}$ vs. $p_{T}^{b}$ for several selections of $p_{T}^{a}$ for 0-5 central Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV. The curve shows the result of the simultaneous fit.

Extracted values of $v^{even}_{1}$ vs. $p_{T}$ for 0-10 central Au+Au collisions for several values of $\sqrt{s_{_{NN}}}$ as indicated; the $v^{even}_{1}$ values are obtained via fits. The curve in panel (a) shows the result from a viscous hydrodynamically based predictions.

(a) Centrality dependence of $v^{even}_{1}$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c for Au+Au collisions at $\sqrt{s_{_{NN}}} = 200, 39$ and $19.6$ GeV; (b) $K$ vs. $\langle N_{ch} \rangle^{-1}$ for the $v^{even}_{1}$ values shown in (a). The $\langle N_{ch} \rangle$ values correspond to the centrality intervals indicated in panel (a).

More…