We report the measurement of charged $D^*$ mesons in inclusive jets produced in proton-proton collisions at a center of mass energy $\sqrt{s}$ = 200 GeV with the STAR experiment at RHIC. For $D^{*}$ mesons with fractional momenta $0.2 < z < 0.5$ in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be $N(D^{*+}+D^{*-})/N(\mathrm{jet}) = 0.015 \pm 0.008 (\mathrm{stat}) \pm 0.007 (\mathrm{sys})$. This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.
A search is reported for charge-parity D$^0$$\to$ K$^0_\mathrm{S}$K$^0_\mathrm{S}$$CP$ violation in D$^0$$\to$ K$^0_\mathrm{S}$K$^0_\mathrm{S}$ decays, using data collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb$^{-1}$, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D$^{*+}$$\to$ D$^0\pi^+$ and D$^{*-}$$\to$ D$^0\pi^-$. The D$^0$$\to$ K$^0_\mathrm{S}$K$^0_\mathrm{S}$$CP$ asymmetry in D$^0$$\to$ K$^0_\mathrm{S}$K$^0_\mathrm{S}$ is measured to be $A_{CP}$( K$^0_\mathrm{S}$K$^0_\mathrm{S}$) = (6.2 $\pm$ 3.0 $\pm$ 0.2 $\pm$ 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D$^0$ $\to$ K$^0_\mathrm{S}$K$^0_\mathrm{S}$ $CP$ asymmetry in the D$^0$ $\to$ K$^0_\mathrm{S}\pi^+\pi^-$ decay. This is the first D$^0$ $\to$ K$^0_\mathrm{S}$K$^0_\mathrm{S}$ $CP$ asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.