Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

1 data table match query

Forward-backward asymmetry from full angular range.


Improving constraints on gluon spin-momentum correlations in transversely polarized protons via midrapidity open-heavy-flavor electrons in $p^{\uparrow}+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 107 (2023) 052012, 2023.
Inspire Record 2072832 DOI 10.17182/hepdata.130883

Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at $\sqrt{s}=200$ GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.

1 data table match query

Data from Figure 1 of open heavy flavor $e^{\pm}$ transverse single-spin asymmetries in transversely polarized p+p collisions as a function of $p_{T}$.


Measurement of the angular distribution of electrons from W ---> e neutrino decays observed in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 63 (2001) 072001, 2001.
Inspire Record 533572 DOI 10.17182/hepdata.41717

We present the first measurement of the electron angular distribution parameter alpha_2 in W to e nu events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the D0 detector during the 1994--1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1 +/- alpha_1 cos theta* + alpha_2 cos^2 theta*), where theta* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters alpha_1 and alpha_2 become functions of p_T^W, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.

1 data table match query

Angular distributions of the emitted charged lepton is fitted to the formula d(sig)/d(pt**2)/dy/d(cos(theta*)) = const*(1 +- alpha_1*cos(theta*) + alpha_2*(cos(theta*))**2). The angle theta* is measured in the Collins-Soper frame. alpha_1 velues are calculated based on the measured PT(W) of each event. Possible variations of alpha_1 are treated as a source of systematic uncertainty.


Beam-spin asymmetries in the azimuthal distribution of pion electroproduction.

The HERMES collaboration Airapetian, A. ; Akopov, Z. ; Amarian, M. ; et al.
Phys.Lett.B 648 (2007) 164-170, 2007.
Inspire Record 735612 DOI 10.17182/hepdata.41783

A measurement of the beam-spin asymmetry in the azimuthal distribution of pions produced in semi-inclusive deep-inelastic scattering off protons is presented. The measurement was performed using the {HERMES} spectrometer with a hydrogen gas target and the longitudinally polarized 27.6 GeV positron beam of HERA. The sinusoidal amplitude of the dependence of the asymmetry on the angle $\phi$ of the hadron production plane around the virtual photon direction relative to the lepton scattering plane was measured for $\pi^+,\pi^-$ and $\pi^0$ mesons. The dependence of this amplitude on the Bjorken scaling variable and on the pion fractional energy and transverse momentum is presented. The results are compared to theoretical model calculations.

6 data tables match query

Beam SSA as a function of Z, X, hadronic PT and Q**2.

Beam SSA as a function of Z, X, hadronic PT and Q**2.

Beam SSA as a function of Z, X, hadronic PT and Q**2.

More…

Spin correlation in t anti-t production from p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 85 (2000) 256-261, 2000.
Inspire Record 524260 DOI 10.17182/hepdata.42996

The D0 collaboration has performed a study of spin correlation in tt-bar production for the process tt-bar to bb-bar W^+W^-, where the W bosons decay to e-nu or mu-nu. A sample of six events was collected during an exposure of the D0 detector to an integrated luminosity of approximately 125 pb^-1 of sqrt{s}=1.8 TeV pp-bar collisions. The standard model (SM) predicts that the short lifetime of the top quark ensures the transmission of any spin information at production to the tt-bar decay products. The degree of spin correlation is characterized by a correlation coefficient k. We find that k>-0.25 at the 68% confidence level, in agreement with the SM prediction of k=0.88.

1 data table match query

No description provided.


Measurement of the spin asymmetry in the photoproduction of pairs of high p(T) hadrons at HERMES.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Amarian, M. ; et al.
Phys.Rev.Lett. 84 (2000) 2584-2588, 2000.
Inspire Record 503784 DOI 10.17182/hepdata.43919

We present a measurement of the longitudinal spin asymmetry A_|| in photoproduction of pairs of hadrons with high transverse momentum p_T. Data were accumulated by the HERMES experiment using a 27.5 GeV polarized positron beam and a polarized hydrogen target internal to the HERA storage ring. For h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative value is in contrast to the positive asymmetries typically measured in deep inelastic scattering from protons, and is interpreted to arise from a positive gluon polarization.

1 data table match query

Asymmetry measurement with a PT cut of 1.5 GeV on the hadron with the higher PT, and 1.0 GeV on the hadron with the lower PT.


Measurement of the target asymmetry of eta and pi0 photoproduction on the proton.

Bock, A. ; Anton, G. ; Beulertz, W. ; et al.
Phys.Rev.Lett. 81 (1998) 534-537, 1998.
Inspire Record 474492 DOI 10.17182/hepdata.19492

At the tagged photon facility PHOENICS at the Bonn accelerator ELSA a measurement of the target asymmetry of the reaction γp→pη from threshold to 1150 MeV has been performed. Simultaneously the reaction γp→pπ0 has been measured in the first resonance region. Results are presented for both reactions. The target asymmetry data are suited to put considerable constraints on the model parameters used for the theoretical description of meson photoproduction.

3 data tables match query

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).


Direct measurement of leptonic coupling asymmetries with polarized Z's.

The SLD collaboration Abe, K. ; Akagi, T. ; Allen, N.J. ; et al.
Phys.Rev.Lett. 79 (1997) 804-808, 1997.
Inspire Record 442260 DOI 10.17182/hepdata.19552

We present direct measurements of the $Z~0$-lepton coupling asymmetry parameters, $A_e$, $A_\mu$, and $A_\tau$, based on a data sample of 12,063 leptonic $Z~0$ decays collected by the SLD detector. The $Z$ bosons are produced in collisions of beams of polarized $e~-$ with unpolarized $e~+$ at the SLAC Linear Collider. The couplings are extracted from the measurement of the left-right and forward-backward asymmetries for each lepton species. The results are: $A_e=0.152 \pm 0.012 {(stat)} \pm 0.001 {(syst)}$, $A_\mu=0.102 \pm 0.034 \pm 0.002$, and $A_\tau=0.195 \pm 0.034 \pm 0.003$.

1 data table match query

No description provided.


Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering

Wang, D. ; Pan, K. ; Subedi, R. ; et al.
Phys.Rev.C 91 (2015) 045506, 2015.
Inspire Record 1327482 DOI 10.17182/hepdata.72848

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

5 data tables match query

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.

More…

Measurement of the electron charge asymmetry in p anti-p ---> W + X ---> e nu + X events at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 101 (2008) 211801, 2008.
Inspire Record 791230 DOI 10.17182/hepdata.42683

We present a measurement of the electron charge asymmetry in ppbar->W+X->enu+X events at a center of mass energy of 1.96 TeV using 0.75 fb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations from next-to-leading order calculations in perturbative quantum chromodynamics. These measurements will allow more accurate determinations of the proton parton distribution functions.

1 data table match query

Folded electron charged asymmetry.