Showing 10 of 22 results
A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the $WZ$+jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.
Observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Expected exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Expected exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRGGWZ-H.
N-1 distribution for $E_{\mathrm{T}}^{\mathrm{miss}}$of observed data and expected background in SRGGSlep-M.
N-1 distribution for $\sum{p_{\mathrm{T}}^\mathrm{jet}}$of observed data and expected background in SRUDD-ge2b.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRLQD.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRSSWZ-H.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRSSSlep-H(loose).
Signal acceptance for SRGGWZ-H signal region from Fig 10(c) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-H signal region from Fig 15(c) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGWZ-M signal region from Fig 10(b) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-M signal region from Fig 15(b) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGWZ-L signal region from Fig 10(a) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-L signal region from Fig 15(a) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-L signal region from Fig 12(a) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-L signal region from Fig 17(a) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-M signal region from Fig 12(b) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-M signal region from Fig 17(b) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-H signal region from Fig 12(c) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-H signal region from Fig 17(c) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRUDD-1b signal region from Fig 14(b) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-1b signal region from Fig 19(b) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-2b signal region from Fig 14(c) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-2b signal region from Fig 19(c) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-ge2b signal region from Fig 14(d) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-ge2b signal region from Fig 19(d) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-ge3b signal region from Fig 14(e) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-ge3b signal region from Fig 19(e) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRLQD signal region from Fig 14(a) in a SUSY scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Signal efficiency for SRLQD signal region from Fig 19(a) in a SUSY scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Signal acceptance for SRSSWZ-L signal region from Fig 11(a) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-L signal region from Fig 16(a) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-ML signal region from Fig 11(b) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-ML signal region from Fig 16(b) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-MH signal region from Fig 11(c) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-MH signal region from Fig 16(c) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-H signal region from Fig 11(d) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-H signal region from Fig 16(d) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-H signal region from Fig 13(d) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-H signal region from Fig 18(d) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-MH signal region from Fig 13(c) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-MH signal region from Fig 18(c) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-L signal region from Fig 13(a) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-L signal region from Fig 18(a) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-ML signal region from Fig 13(b) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-ML signal region from Fig 18(b) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-H(loose) signal region from Fig 13(e) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-H(loose) signal region from Fig 18(e) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-H in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-M in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-L in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-L in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-M in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-H in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-1b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-2b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-ge2b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-ge3b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRLQD in a susy scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2200 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1870 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-L in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-ML in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-MH in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-H in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-H in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-MH in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-L in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-ML in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-H(loose) in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Cross-section upper limits at 95% CL from Fig1(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Cross-section upper limits at 95% CL from Fig1(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Cross-section upper limits at 95% CL from Fig1(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons ($e$ or $\mu$) with the same electric charge, or three leptons. The analysis uses 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without $R$-parity conservation are considered. In topologies with intermediate states including either $Wh$ or $WZ$ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural $R$-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an $R$-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.
Observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
positive one $\sigma$ observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
negative $\sigma$ variation of observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
Observed excluded cross-section at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 8(aux).
Expected exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production.
Observed exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from from Fig 13(a) and from Fig 7 and Fig 10(aux).
Observed excluded cross-section at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 7(aux) and Fig 10(aux).
positive one $\sigma$ observed exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from from Fig 13(a) and from Fig 7 and Fig 10(aux).
negative one $\sigma$ observed exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from from Fig 13(a) and from Fig 7 and Fig 10(aux).
Expected exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production.
Expected exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production.
Expected exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region $SR^{bRPV}_{2l-SS}$. in a susy scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV, tan$\beta$=5. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region $SR^{bRPV}_{3l}$. in a susy scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV, tan$\beta$=5. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region $SR^{WZ}_{high-m_{T2}}$. The wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{\pm} _{1}/\tilde{\chi}^{0} _{2})$ = 150 GeV, $m(\tilde{\chi}^{0} _{1})$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region $SR^{WZ}_{low-m_{T2}}$. The wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{\pm} _{1}/\tilde{\chi}^{0} _{2})$ = 150 GeV, $m(\tilde{\chi}^{0} _{1})$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the low mass $SR^{RPV}_{2l1b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the medium mass $SR^{RPV}_{2l1b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the low mass $SR^{RPV}_{2l2b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the medium mass $SR^{RPV}_{2l2b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the high mass $SR^{RPV}_{2l2b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the low mass $SR^{RPV}_{2l3b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the medium mass $SR^{RPV}_{2l3b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the high mass $SR^{RPV}_{2l3b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the $SR^{Wh}_{low-m_{T2} }$. The wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Higgs bosons. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{\pm} _{1}/\tilde{\chi}^{0} _{2})$ = 300 GeV, $m(\tilde{\chi}^{0} _{1})$ = 100 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the $SR^{Wh}_{high-m_{T2} }$. The wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Higgs bosons. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{\pm} _{1}/\tilde{\chi}^{0} _{2})$ = 300 GeV, $m(\tilde{\chi}^{0} _{1})$ = 100 GeV. Only statistical uncertainties are shown.
Signal Hepdataeptance for $SR^{bRPV}_{2l-SS}$ signal region from Fig 13(a)(aux) in a SUSY scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays.
Signal Hepdataeptance for $SR^{bRPV}_{3l}$ signal region from Fig 13(b)(aux) in a SUSY scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays.
Signal acceptance for $SR^{WZ}_{high-m_{T2}}$ in a SUSY scenario where the wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons.
Signal acceptance for $SR^{WZ}_{low-m_{T2}}$ in a SUSY scenario where the wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons.
Signal acceptance for $SR^{RPV}_{2l1b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l1b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l2b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l2b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l2b}-H$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l3b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l3b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l3b}-H$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{bRPV}_{2l-SS}$ signal region in a SUSY scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays.
Signal efficiency for $SR^{bRPV}_{3l}$ signal region in a SUSY scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays.
Signal efficiency for $SR^{WZ}_{high-m_{T2}}$ in a SUSY scenario where the wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons.
Signal efficiency for $SR^{WZ}_{low-m_{T2}}$ in a SUSY scenario where the wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons.
Signal efficiency for $SR^{RPV}_{2l1b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l1b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l2b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l2b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l2b}-H$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l3b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l3b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l3b}-H$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{Wh}_{high-m_{T2} }$ signal region from Fig 11(a)(aux) in a SUSY scenario where direct production of a lightest $\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$ , decay with 100% branching ratio to a final state with a same sign light lepton (e or $\mu$) pair and two lightest neutralino1, via the on-shell emission of SM W and Higgs bosons,
Signal acceptance for $SR^{Wh}_{low-m_{T2} }$ signal region from Fig 11(b)(aux) in a SUSY scenario where direct production of a lightest $\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$ , decay with 100% branching ratio to a final state with a same sign light lepton (e or $\mu$) pair and two lightest neutralino1, via the on-shell emission of SM W and Higgs bosons,
Signal efficiency for $SR^{Wh}_{high-m_{T2} }$ signal region from Fig 15(a)(aux) in a SUSY scenario where direct production of a lightest $\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$ , decay with 100% branching ratio to a final state with a same sign light lepton (e or $\mu$) pair and two lightest neutralino1, via the on-shell emission of SM W and Higgs bosons,
Signal efficiency for $SR^{Wh}_{low-m_{T2} }$ signal region from Fig 15(b)(aux) in a SUSY scenario where direct production of a lightest $\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$ , decay with 100% branching ratio to a final state with a same sign light lepton (e or $\mu$) pair and two lightest neutralino1, via the on-shell emission of SM W and Higgs bosons,
Observed 95% X-section upper limits as a function of higgsino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{1}/\tilde{\chi}^{0}_{2}$ mass in the bilinear RPV model from Fig 14.
Observed 95% X-section upper limits as a function of higgsino $\tilde{\chi}^{0}_{1}/\tilde{\chi}^{0}_{2}$ mass in the UDD RPV model from Fig 18.
Observed 95% X-section upper limits as a function of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ mass in the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 9(aux).
N-1 distributions for $m_{T2}$ of observed data and expected background towards $SR^{WZ}_{high-m_{T2}}$ from publication's Figure 11(a) . The last bin is inclusive.
N-1 distributions for $m_{T2}$ of observed data and expected background towards $SR^{WZ}_{low-m_{T2}}$ from publication's Figure 11(b) . The last bin is inclusive.
N-1 distributions for $m_{T2}$ of observed data and expected background towards $SR^{bRPV}_{2l-SS}$ from publication's Figure 11(c) . The last bin is inclusive.
N-1 distributions for $m_{T2}$ of observed data and expected background towards $SR^{bRPV}_{3l}$ from publication's Figure 11(d) . The last bin is inclusive.
N-1 distributions for $\sum p^{b-jet}_{T}/\sum p^{jet}_{T}$ of observed data and expected background towards $SR^{RPV}_{2l1b}-L$ from publication's Figure 16(a) . The last bin is inclusive.
N-1 distributions for $\sum p^{b-jet}_{T}/\sum p^{jet}_{T}$ of observed data and expected background towards $SR^{RPV}_{2l2b}-M$ from publication's Figure 16(b) . The last bin is inclusive.
N-1 distributions for $\sum p^{b-jet}_{T}/\sum p^{jet}_{T}$ of observed data and expected background towards $SR^{RPV}_{2l3b}-H$ from publication's Figure 16(c) . The last bin is inclusive.
N-1 distribution for $E_{T}^{miss}$ in $SR^{Wh}_{high-m_{T2} }$ in ee channel
N-1 distribution for $E_{T}^{miss}$ in $SR^{Wh}_{high-m_{T2} }$ in e$\mu$ channel
N-1 distribution for $E_{T}^{miss}$ in $SR^{Wh}_{high-m_{T2} }$ in $\mu\mu$ channel
N-1 distribution for $\mathcal{S}(E_{T}^{miss})$ in $SR^{Wh}_{low-m_{T2} }$ in ee channel
N-1 distribution for $\mathcal{S}(E_{T}^{miss})$ in $SR^{Wh}_{low-m_{T2} }$ in e$\mu$ channel
N-1 distribution for $\mathcal{S}(E_{T}^{miss})$ in $SR^{Wh}_{low-m_{T2} }$ in $\mu\mu$ channel
The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a $b$-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.35^{+0.36}_{-0.34}$. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of all Higgs boson candidates with reconstructed $p_T^H$ in the various bins of the dilepton (left), single-lepton resolved (middle) and boosted (right) channels.
Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of all Higgs boson candidates with reconstructed $p_T^H$ in the various bins of the dilepton (left), single-lepton resolved (middle) and boosted (right) channels.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Comparison of predicted and observed event yields in each of the control and signal regions in the dilepton channel after the fit to the data. The uncertainty band includes all uncertainties and their correlations.
Comparison of predicted and observed event yields in each of the control and signal regions in the dilepton channel after the fit to the data. The uncertainty band includes all uncertainties and their correlations.
Comparison of predicted and observed event yields in each of the control and signal regions in the single-lepton channels after the fit to the data. The uncertainty band includes all uncertainties and their correlations.
Comparison of predicted and observed event yields in each of the control and signal regions in the single-lepton channels after the fit to the data. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $120\le p_T^H<200$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $120\le p_T^H<200$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $200\le p_T^H<300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $200\le p_T^H<300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $120\le p_T^H<200$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $120\le p_T^H<200$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $200\le p_T^H<300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $200\le p_T^H<300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 450$ GeV (yield only). The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 450$ GeV (yield only). The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton boosted SRs after the inclusive fit to the data for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton boosted SRs after the inclusive fit to the data for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton boosted SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton boosted SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for ${\Delta R^{{avg}}_{bb}}$ after the inclusive fit to the data in the single-lepton $CR^{5j}_{{\geq}4b\ lo}$ control region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for ${\Delta R^{{avg}}_{bb}}$ after the inclusive fit to the data in the single-lepton $CR^{5j}_{{\geq}4b\ lo}$ control region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for ${\Delta R^{{avg}}_{bb}}$ after the inclusive fit to the data in the single-lepton $CR^{5j}_{{\geq}4b\ hi}$ control region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for ${\Delta R^{{avg}}_{bb}}$ after the inclusive fit to the data in the single-lepton $CR^{5j}_{{\geq}4b\ hi}$ control region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit yields of signal ($S$) and total background ($B$) as a function of $\log (S/B)$, compared with data. Final-discriminant bins in all dilepton and single-lepton analysis regions are combined into bins of $\log (S/B)$, with the signal normalised to the SM prediction used for the computation of $\log (S/B)$. The signal is then shown normalised to the best-fit value and the SM prediction. The lower frame reports the ratio of data to background, and this is compared with the expected ${t\bar {t}H}$-signal-plus-background yield divided by the background-only yield for the best-fit signal strength (solid red line) and the SM prediction (dashed orange line).
Post-fit yields of signal ($S$) and total background ($B$) as a function of $\log (S/B)$, compared with data. Final-discriminant bins in all dilepton and single-lepton analysis regions are combined into bins of $\log (S/B)$, with the signal normalised to the SM prediction used for the computation of $\log (S/B)$. The signal is then shown normalised to the best-fit value and the SM prediction. The lower frame reports the ratio of data to background, and this is compared with the expected ${t\bar {t}H}$-signal-plus-background yield divided by the background-only yield for the best-fit signal strength (solid red line) and the SM prediction (dashed orange line).
Comparison between data and prediction for the reconstruction BDT score for the Higgs boson candidate identified using Higgs boson information, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the reconstruction BDT score for the Higgs boson candidate identified using Higgs boson information, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the average $\Delta \eta $ between $b$-tagged jets, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the average $\Delta \eta $ between $b$-tagged jets, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the likelihood discriminant, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the likelihood discriminant, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the average $\Delta R$ for all possible combinations of $b$-tagged jet pairs, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the average $\Delta R$ for all possible combinations of $b$-tagged jet pairs, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the reconstructed Higgs boson candidate mass for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit distribution of the reconstructed Higgs boson candidate mass for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit distribution of the reconstructed Higgs boson candidate mass for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit distribution of the reconstructed Higgs boson candidate mass for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit distribution of the reconstructed Higgs boson candidate mass for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit distribution of the reconstructed Higgs boson candidate mass for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Fitted values of the ${t\bar {t}H}$ signal strength parameter in the individual channels and in the inclusive signal-strength measurement.
Fitted values of the ${t\bar {t}H}$ signal strength parameter in the individual channels and in the inclusive signal-strength measurement.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the fit. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the fit. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Pre-fit distribution of the number of jets in the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Pre-fit distribution of the number of jets in the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Pre-fit distribution of the number of jets in the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Pre-fit distribution of the number of jets in the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Pre-fit distribution of the number of jets in the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Pre-fit distribution of the number of jets in the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Post-fit distribution of the number of jets in the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the number of jets in the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the number of jets in the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the number of jets in the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the number of jets in the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the number of jets in the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Signal-strength measurements in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive signal strength.
Signal-strength measurements in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive signal strength.
95% CL simplified template cross-section upper limits in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive limit. The observed limits are shown (solid black lines), together with the expected limits both in the background-only hypothesis (dotted black lines) and in the SM hypothesis (dotted red lines). In the case of the expected limits in the background-only hypothesis, one- and two-standard-deviation uncertainty bands are also shown. The hatched uncertainty bands correspond to the theory uncertainty in the fiducial cross-section prediction in each bin.
95% CL simplified template cross-section upper limits in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive limit. The observed limits are shown (solid black lines), together with the expected limits both in the background-only hypothesis (dotted black lines) and in the SM hypothesis (dotted red lines). In the case of the expected limits in the background-only hypothesis, one- and two-standard-deviation uncertainty bands are also shown. The hatched uncertainty bands correspond to the theory uncertainty in the fiducial cross-section prediction in each bin.
The ratios $S/B$ (black solid line, referring to the vertical axis on the left) and $S/\sqrt{B}$ (red dashed line, referring to the vertical axis on the right) for each category in the inclusive analysis in the dilepton channel (left) and in the single-lepton channels (right), where $S$ ($B$) is the number of selected signal (background) events predicted by the simulation and normalised to a luminosity of 139 fb$^{-1}$ .
The ratios $S/B$ (black solid line, referring to the vertical axis on the left) and $S/\sqrt{B}$ (red dashed line, referring to the vertical axis on the right) for each category in the inclusive analysis in the dilepton channel (left) and in the single-lepton channels (right), where $S$ ($B$) is the number of selected signal (background) events predicted by the simulation and normalised to a luminosity of 139 fb$^{-1}$ .
Comparison between data and prediction for the $\Delta R$ between the Higgs candidate and the ${t\bar {t}}$ candidate system, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the $\Delta R$ between the Higgs candidate and the ${t\bar {t}}$ candidate system, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the number of $b$-tagged jet pairs with an invariant mass within 30 GeV of 125 GeV, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the number of $b$-tagged jet pairs with an invariant mass within 30 GeV of 125 GeV, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the reconstruction BDT score for the Higgs boson candidate identified using Higgs boson information, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the reconstruction BDT score for the Higgs boson candidate identified using Higgs boson information, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the $\Delta R$ between the two highest ${p_{{T}}}$ $b$-tagged jets, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the $\Delta R$ between the two highest ${p_{{T}}}$ $b$-tagged jets, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the sum of $b$-tagging discriminants of jets from Higgs, hadronic top and leptonic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the sum of $b$-tagging discriminants of jets from Higgs, hadronic top and leptonic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the sum of $b$-tagging discriminants of jets from Higgs, hadronic top and leptonic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the sum of $b$-tagging discriminants of jets from Higgs, hadronic top and leptonic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the hadronic top candidate invariant mass, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the hadronic top candidate invariant mass, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the hadronic top candidate invariant mass, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the hadronic top candidate invariant mass, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the fraction of the sum of $b$-tagging discriminants of all jets not associated to the Higgs or hadronic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the fraction of the sum of $b$-tagging discriminants of all jets not associated to the Higgs or hadronic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the fraction of the sum of $b$-tagging discriminants of all jets not associated to the Higgs or hadronic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the fraction of the sum of $b$-tagging discriminants of all jets not associated to the Higgs or hadronic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $0\le {\hat{p}_{{T}}^{H}}<120$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $0\le {\hat{p}_{{T}}^{H}}<120$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $120\le {\hat{p}_{{T}}^{H}}<200$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $120\le {\hat{p}_{{T}}^{H}}<200$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $200\le {\hat{p}_{{T}}^{H}}<300$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $200\le {\hat{p}_{{T}}^{H}}<300$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $300\le {\hat{p}_{{T}}^{H}}<450$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $300\le {\hat{p}_{{T}}^{H}}<450$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for ${\hat{p}_{{T}}^{H}}\ge 450$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for ${\hat{p}_{{T}}^{H}}\ge 450$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
95% confidence level upper limits on signal-strength measurements in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive signal-strength limit, after the fit used to extract multiple signal-strength parameters. The observed limits are shown (solid black lines), together with the expected limits both in the background-only hypothesis (dotted black lines) and in the SM hypothesis (dotted red lines). In the case of the expected limits in the background-only hypothesis, one- and two-standard-deviation uncertainty bands are also shown.
95% confidence level upper limits on signal-strength measurements in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive signal-strength limit, after the fit used to extract multiple signal-strength parameters. The observed limits are shown (solid black lines), together with the expected limits both in the background-only hypothesis (dotted black lines) and in the SM hypothesis (dotted red lines). In the case of the expected limits in the background-only hypothesis, one- and two-standard-deviation uncertainty bands are also shown.
Post-fit correlation matrix (in percentages) between the $\mu $ values obtained in the STXS bins.
Post-fit correlation matrix (in percentages) between the $\mu $ values obtained in the STXS bins.
Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of Higgs boson candidates which are truth-matched to ${b\bar {b}}$ decays, with reconstructed $p_T^H$ in the various bins of the dilepton (left), single lepton resolved (middle) and boosted (right) channels.
Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of Higgs boson candidates which are truth-matched to ${b\bar {b}}$ decays, with reconstructed $p_T^H$ in the various bins of the dilepton (left), single lepton resolved (middle) and boosted (right) channels.
Pre-fit event yields in the dilepton signal regions and control regions. All uncertainties are included except the $k({t\bar {t}+{\geq }1b})$ uncertainty that is not defined pre-fit. For the ${t\bar {t}H}$ signal, the pre-fit yield values correspond to the theoretical prediction and corresponding uncertainties. `Other sources' refers to s-channel, t-channel, $tW$, $tWZ$, $tZq$, $Z+$ jets and diboson events.
Pre-fit event yields in the dilepton signal regions and control regions. All uncertainties are included except the $k({t\bar {t}+{\geq }1b})$ uncertainty that is not defined pre-fit. For the ${t\bar {t}H}$ signal, the pre-fit yield values correspond to the theoretical prediction and corresponding uncertainties. `Other sources' refers to s-channel, t-channel, $tW$, $tWZ$, $tZq$, $Z+$ jets and diboson events.
Post-fit event yields in the dilepton signal regions and control regions, after the inclusive fit in all channels. All uncertainties are included, taking into account correlations. For the ${t\bar {t}H}$ signal, the post-fit yield and uncertainties correspond to those in the inclusive signal-strength measurement. `Other sources' refers to s-channel, t-channel, $tW$, $tWZ$, $tZq$, $Z+$ jets and diboson events.
Post-fit event yields in the dilepton signal regions and control regions, after the inclusive fit in all channels. All uncertainties are included, taking into account correlations. For the ${t\bar {t}H}$ signal, the post-fit yield and uncertainties correspond to those in the inclusive signal-strength measurement. `Other sources' refers to s-channel, t-channel, $tW$, $tWZ$, $tZq$, $Z+$ jets and diboson events.
Pre-fit event yields in the single-lepton resolved and boosted signal regions and control regions. All uncertainties are included except the $k({t\bar {t}+{\geq }1b})$ uncertainty that is not defined pre-fit. For the ${t\bar {t}H}$ signal, the pre-fit yield values correspond to the theoretical prediction and corresponding uncertainties. `Other top sources' refers to s-channel, t-channel, $tWZ$ and $tZq$ events.
Pre-fit event yields in the single-lepton resolved and boosted signal regions and control regions. All uncertainties are included except the $k({t\bar {t}+{\geq }1b})$ uncertainty that is not defined pre-fit. For the ${t\bar {t}H}$ signal, the pre-fit yield values correspond to the theoretical prediction and corresponding uncertainties. `Other top sources' refers to s-channel, t-channel, $tWZ$ and $tZq$ events.
Post-fit event yields in the single-lepton resolved and boosted signal regions and control regions, after the inclusive fit in all channels. All uncertainties are included, taking into account correlations. For the ${t\bar {t}H}$ signal, the post-fit yield and uncertainties correspond to those in the inclusive signal-strength measurement. `Other top sources' refers to s-channel, t-channel, $tWZ$ and $tZq$ events.
Post-fit event yields in the single-lepton resolved and boosted signal regions and control regions, after the inclusive fit in all channels. All uncertainties are included, taking into account correlations. For the ${t\bar {t}H}$ signal, the post-fit yield and uncertainties correspond to those in the inclusive signal-strength measurement. `Other top sources' refers to s-channel, t-channel, $tWZ$ and $tZq$ events.
Breakdown of the contributions to the uncertainties in $\mu$. The contributions from the different sources of uncertainty are evaluated after the fit. The $\Delta \mu $ values are obtained by repeating the fit after having fixed a certain set of nuisance parameters corresponding to a group of systematic uncertainties, and then evaluating $(\Delta \mu)^2$ by subtracting the resulting squared uncertainty of $\mu $ from its squared uncertainty found in the full fit. The same procedure is followed when quoting the effect of the ${t\bar {t}+{\geq }1b}$ normalisation. The total uncertainty is different from the sum in quadrature of the different components due to correlations between nuisance parameters existing in the fit.
Breakdown of the contributions to the uncertainties in $\mu$. The contributions from the different sources of uncertainty are evaluated after the fit. The $\Delta \mu $ values are obtained by repeating the fit after having fixed a certain set of nuisance parameters corresponding to a group of systematic uncertainties, and then evaluating $(\Delta \mu)^2$ by subtracting the resulting squared uncertainty of $\mu $ from its squared uncertainty found in the full fit. The same procedure is followed when quoting the effect of the ${t\bar {t}+{\geq }1b}$ normalisation. The total uncertainty is different from the sum in quadrature of the different components due to correlations between nuisance parameters existing in the fit.
Fraction (in percentages) of signal events, after SR and CR selections, originating from $b\bar {b}$, $WW$ and other remaining Higgs boson decay modes in the dilepton channel.
Fraction (in percentages) of signal events, after SR and CR selections, originating from $b\bar {b}$, $WW$ and other remaining Higgs boson decay modes in the dilepton channel.
Fraction (in percentages) of signal events, after SR and CR selections, originating from $b\bar {b}$, $WW$ and other remaining Higgs boson decay modes in the single-lepton channels.
Fraction (in percentages) of signal events, after SR and CR selections, originating from $b\bar {b}$, $WW$ and other remaining Higgs boson decay modes in the single-lepton channels.
Predicted SM ${t\bar {t}H}$ cross-section in each of the five STXS ${\hat{p}_{{T}}^{H}}$ bins and signal acceptance times efficiency (including all event selection criteria) in each STXS bin as well as for the inclusive ${\hat{p}_{{T}}^{H}}$ range.
Predicted SM ${t\bar {t}H}$ cross-section in each of the five STXS ${\hat{p}_{{T}}^{H}}$ bins and signal acceptance times efficiency (including all event selection criteria) in each STXS bin as well as for the inclusive ${\hat{p}_{{T}}^{H}}$ range.
Number of expected signal events before the fit, after each selection requirement applied to enter the dilepton channel $SR^{\geq 4j}_{\geq 4b}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
Number of expected signal events before the fit, after each selection requirement applied to enter the dilepton channel $SR^{\geq 4j}_{\geq 4b}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
Number of expected signal events before the fit, after each selection requirement applied to enter the single-lepton channel resolved $SR^{\geq 6j}_{\geq 4b}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
Number of expected signal events before the fit, after each selection requirement applied to enter the single-lepton channel resolved $SR^{\geq 6j}_{\geq 4b}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
Number of expected signal events before the fit, after each selection requirement applied to enter the single-lepton channel boosted $SR_{boosted}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
Number of expected signal events before the fit, after each selection requirement applied to enter the single-lepton channel boosted $SR_{boosted}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and expected 95% CL upper limits on the gluon-gluon fusion Higgs boson production cross section times ditau branching fraction as a function of the Higgs boson mass.
Observed and expected 95% CL upper limits on the gluon-gluon fusion Higgs boson production cross section times ditau branching fraction as a function of the Higgs boson mass.
Observed and expected 95% CL upper limits on the gluon-gluon fusion Higgs boson production cross section times ditau branching fraction as a function of the Higgs boson mass.
Observed and expected 95% CL upper limits on the gluon-gluon fusion Higgs boson production cross section times ditau branching fraction as a function of the Higgs boson mass.
Observed and expected 95% CL upper limits on the b-associated Higgs boson production cross section times ditau branching fraction as a function of the boson mass.
Observed and expected 95% CL upper limits on the b-associated Higgs boson production cross section times ditau branching fraction as a function of the boson mass.
Observed and expected 95% CL upper limits on the b-associated Higgs boson production cross section times ditau branching fraction as a function of the boson mass.
Observed and expected 95% CL upper limits on the b-associated Higgs boson production cross section times ditau branching fraction as a function of the boson mass.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
Acceptance times efficiency for a scalar boson produced by gluon-gluon fusion as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by gluon-gluon fusion as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by gluon-gluon fusion as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by gluon-gluon fusion as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by b-associated production as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by b-associated production as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by b-associated production as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by b-associated production as a function of the scalar boson mass.
Observed 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Observed 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Observed 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Observed 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The observed 95% CL upper limits with one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 900 GeV, $m(\tilde \chi_1^\pm)$ = 150 GeV and $m(\tilde \chi_1^0)$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 900 GeV, $m(\tilde \chi_1^\pm)$ = 150 GeV and $m(\tilde \chi_1^0)$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 900 GeV, $m(\tilde \chi_1^\pm)$ = 150 GeV and $m(\tilde \chi_1^0)$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be at least one b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.
Observed and predicted mTtot distribution in the b-tag category of the 2tau_h channel. Despite listing this as an exclusive final state (as there must be at least one b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.
Observed and predicted mTtot distribution for the b-inclusive selection in the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The prediction for a SSM Zprime with masses of 1500, 2000 and 2500 GeV are also provided.
Observed and predicted mTtot distribution for the b-inclusive selection in the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The prediction for a SSM Zprime with masses of 1500, 2000 and 2500 GeV are also provided.
Observed and expected 95% CL upper limits on the b-associated Higgs boson production cross section times ditau branching fraction as a function of the boson mass.
Observed and expected 95% CL upper limits on the Drell Yan production cross section times ditau branching fraction as a function of the Zprime boson mass.
Observed and expected 95% CL upper limits on the Higgs boson production cross section times ditau branching fraction as a function of the boson mass and the relative strength of the b-associated production.
Ratio of the 95% CL upper limits on the production cross section times branching fraction for alternate Zprime models with respect to the SSM, both observed and expected are shown.
Acceptance, acceptance times efficiency and b-tag category fraction for a scalar boson produced by gluon-gluon fusion as a function of the scalar boson mass.
Acceptance, acceptance times efficiency and b-tag category fraction for a scalar boson produced by b-associated production as a function of the scalar boson mass.
Acceptance and acceptance times efficiency for a heavy gauge boson produced by Drell Yan as a function of the gauge boson mass.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.
Observed and expected 95% CL upper limits on the gluon-gluon fusion Higgs boson production cross section times ditau branching fraction as a function of the boson mass.
The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ($\tilde{b}_1$) is reported. The search uses 3.2 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from $b$-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95% confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric $R$-parity-conserving models in which the $\tilde{b}_1$ is the lightest squark and is assumed to decay exclusively via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the $\tilde{\chi}_1^0$ mass below 360 (100) GeV whilst differences in mass above 100 GeV between the $\tilde{b}_1$ and the $\tilde{\chi}_1^0$ are excluded up to a $\tilde{b}_1$ mass of 500 GeV.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.
Signal region (SR) providing the best expected sensitivity in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane.
Cross-section upper limit in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the best expected signal region.
Cross-section upper limit in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA250 signal region.
Cross-section upper limit in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA350 signal region.
Cross-section upper limit in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA450 signal region.
Cross-section upper limit in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRB signal region.
Expected CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the best expected signal region.
Expected CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA250 signal region.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA250.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA250.
Expected CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA350 signal region.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA350.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA350.
Expected CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA450 signal region.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA450.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRA450.
Expected CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRB signal region.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRB.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for signal region SRB.
Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the best expected signal region.
Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA250 signal region.
Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA350 signal region.
Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRA450 signal region.
Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the SRB signal region.
Signal efficiency (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the best expected signal region.
Signal efficiency (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA250 signal region.
Signal efficiency (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA350 signal region.
Signal efficiency (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA450 signal region.
Signal efficiency (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRB signal region.
Signal acceptance (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the best expected signal region.
Signal acceptance (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA250 signal region.
Signal acceptance (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA350 signal region.
Signal acceptance (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRA450 signal region.
Signal acceptance (in %) in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario, for the SRB signal region.
Total experimental systematic uncertainty in percent on the signal efficiency times acceptance in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane. The best expected signal region selection is used per point.
A search for $W^\prime$ bosons in events with one lepton (electron or muon) and missing transverse momentum is presented. The search uses 3.2 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the LHC in 2015. The transverse mass distribution is examined and no significant excess of events above the level expected from Standard Model processes is observed. Upper limits on the $W^\prime$ boson cross-section times branching ratio to leptons are set as a function of the $W^\prime$ mass. Assuming a $W^\prime$ boson as predicted by the Sequential Standard Model, $W^\prime$ masses below 4.07 TeV are excluded at the 95% confidence level. This extends the limit set using LHC data at $\sqrt{s}=8$ TeV by around 800 GeV.
Observed and predicted electron channel transverse mass (MT) distribution in the search region. The bin width is constant in log(MT).
Observed and predicted muon channel transverse mass (MT) distribution in the search region. The bin width is constant in log(MT).
W' Product of acceptance and efficiency for the electron and muon selections as a function of the SSM W' pole mass.
Median expected and observed 95% CL upper limits on the cross-section times branching ratio (sigma*B) for W'_SSM production for the exclusive muon and electron channels, and for both channels combined.
The results of a search for the stop, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC $pp$ collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2 fb${}^{-1}$. The analysis targets two types of signal models: gluino-mediated pair production of stops with a nearly mass-degenerate stop and neutralino; and direct pair production of stops, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and stop masses are set at 95% confidence level. The results extend the LHC Run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low stop mass region, and add an excluded stop mass region from 745 to 780 GeV for the direct stop model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vector-like top quarks.
Comparison of data with estimated backgrounds in the $am_\text{T2}$ distribution with the STCR1 event selection except for the requirement on $am_\text{T2}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $b$-tagged jet multiplicity with the STCR1 event selection except for the requirement on the $b$-tagged jet multiplicity. Furthermore, the $\Delta R(b_1,b_2)$ requirement is dropped. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\Delta R(b_1,b_2)$ distribution with the STCR1 event selection except for the requirement on $\Delta R(b_1,b_2)$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\tilde{E}_\text{T}^\text{miss}$ distribution with the TZCR1 event selection except for the requirement on $\tilde{E}_\text{T}^\text{miss}$. The variables $\tilde{E}_\text{T}^\text{miss}$ and $\tilde{m}_\text{T}$ are constructed in the same way as $E_\text{T}^\text{miss}$ and $m_\text{T}$ but treating the leading photon transverse momentum as invisible. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\tilde{m}_\text{T}$ distribution with the TZCR1 event selection except for the requirement on $\tilde{m}_\text{T}$. The variables $\tilde{E}_\text{T}^\text{miss}$ and $\tilde{m}_\text{T}$ are constructed in the same way as $E_\text{T}^\text{miss}$ and $m_\text{T}$ but treating the leading photon transverse momentum as invisible. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of the observed data ($n_\text{obs}$) with the predicted background ($n_\text{exp}$) in the validation and signal regions. The background predictions are obtained using the background-only fit configuration. The bottom panel shows the significance of the difference between data and predicted background, where the significance is based on the total uncertainty ($\sigma_\text{tot}$).
Jet multiplicity distributions for events where exactly two signal leptons are selected. No correction factors are included in the background normalizations. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Jet multiplicity distributions for events where exactly one lepton plus one $\tau$ candidate are selected. No correction factors are included in the background normalizations. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
The $E_\text{T}^\text{miss}$ distribution in SR1. In the plot, the full event selection in the corresponding signal region is applied, except for the requirement on $E_\text{T}^\text{miss}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin contains the overflow. Benchmark signal models are overlaid for comparison. The benchmark models are specified by the gluino and stop masses, given in TeV in the table.
The $m_\text{T}$ distribution in SR1. In the plot, the full event selection in the corresponding signal region is applied, except for the requirement on $m_\text{T}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin contains the overflow. Benchmark signal models are overlaid for comparison. The benchmark models are specified by the gluino and stop masses, given in TeV in the table.
Expected (black dashed) 95% excluded regions in the plane of $m_{\tilde{g}}$ versus $m_{\tilde{t}_1}$ for gluino-mediated stop production.
Observed (red solid) 95% excluded regions in the plane of $m_{\tilde{g}}$ versus $m_{\tilde{t}_1}$ for gluino-mediated stop production.
Expected (black dashed) 95% excluded regions in the plane of $m_{\tilde{t}_1}$ versus $m_{\tilde{\chi}_1^0}$ for direct stop production.
Observed (red solid) 95% excluded regions in the plane of $m_{\tilde{t}_1}$ versus $m_{\tilde{\chi}_1^0}$ for direct stop production.
The expected upper limits on $T$ quark pair production times the squared branching ratio for $T \rightarrow tZ$ as a function of the $T$ quark mass.
The observed upper limits on $T$ quark pair production times the squared branching ratio for $T \rightarrow tZ$ as a function of the $T$ quark mass.
The expected limits on $T$ quarks as a function of the branching ratios $B\left(T \rightarrow bW\right)$ and $B\left(T \rightarrow tH\right)$ for a $T$ quark with a mass of 800 GeV. The $T$ is assumed to decay in three possible ways: $T \to tZ$, $T \to tH$, and $T \to bW$.
The observed limits on $T$ quarks as a function of the branching ratios $B\left(T \rightarrow bW\right)$ and $B\left(T \rightarrow tH\right)$ for a $T$ quark with a mass of 800 GeV. The $T$ is assumed to decay in three possible ways: $T \to tZ$, $T \to tH$, and $T \to bW$.
The $m_\text{T}$ distribution in the WVR2-tail validation region which has the same preselection and jet $p_\text{T}$ requirements as SR2.
The $am_\text{T2}$ distribution in the WVR2-tail validation region which has the same preselection and jet $p_\text{T}$ requirements as SR2.
Large-radius jet mass ($R=1.2$), decomposed into the number of small-radius jet constituents. The lower panel shows the ratio of the total data to the total prediction (summed over all jet multiplicities). Events are required to have one lepton, four jets with $p_\text{T}>80,50,40,40$ GeV, at least one $b$-tagged jet, $E_\text{T}^\text{miss}>200$ GeV, and $m_\text{T}>30$ GeV.
Distribution of $m_\text{T2}^\tau$ in data for a selection enriched in $t\bar{t}$ events with one hadronically decaying $\tau$. Events that have no hadronic $\tau$ candidate (that passes the Loose identification criteria, as well as other requirements) are not shown in the plot.
Upper limits on the model cross-section in units of pb for the gluino-mediated stop models.
Upper limits on the model cross-section in units of pb for the models with direct stop pair production.
Illustration of the best expected signal region per signal grid point for the gluino-mediated stop models. This mapping is used for the final combined exclusion limits.
Illustration of the best expected signal region per signal grid point for models with direct stop pair production. This mapping is used for the final combined exclusion limits.
Expected $CL_s$ values for the gluino-mediated stop models.
Observed $CL_s$ values for the gluino-mediated stop models.
Expected $CL_s$ values for the direct stop pair production models.
Observed $CL_s$ values for the direct stop pair production models.
Expected limit using SR1 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR1 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR1 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR1 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR1 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR1 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Expected limit using SR2 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR2 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR2 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR2 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR2 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR2 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Acceptance for SR1 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR1 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR2 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR2 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR3 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR3 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Efficiency for SR1 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR1 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR2 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR2 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR3 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR3 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
A search for Supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino is reported. It uses an LHC proton--proton dataset at a center-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 3.2 fb$^{-1}$ collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as $b$-jets, large missing transverse momentum and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For neutralino masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the $\sqrt{s} = 8$ TeV dataset.
Distribution of missing transverse energy for SR-Gbb-B.
Distribution of missing transverse energy for SR-Gtt-0L-C.
Distribution of missing transverse energy for SR-Gtt-1L-A.
Expected 95% CL exclusion contour for the Gbb signal.
Observed 95% CL exclusion contour for the Gbb signal.
Expected 95% CL exclusion contour for the Gtt combination.
Observed 95% CL exclusion contour for the Gtt combination.
Acceptances for the Gbb model in SR-Gbb-A. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gbb model in SR-Gbb-B. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gbb model in SR-Gbb-C. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-0L-A. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-0L-B. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-0L-C. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-1L-A. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-1L-B. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptance times efficiency for the Gbb model in SR-Gbb-A.
Acceptance times efficiency for the Gbb model in SR-Gbb-B.
Acceptance times efficiency for the Gbb model in SR-Gbb-C.
Acceptance times efficiency for the Gtt model in SR-Gtt-0L-A.
Acceptance times efficiency for the Gtt model in SR-Gtt-0L-B.
Acceptance times efficiency for the Gtt model in SR-Gtt-0L-C.
Acceptance times efficiency for the Gtt model in SR-Gtt-1L-A.
Acceptance times efficiency for the Gtt model in SR-Gtt-1L-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-A.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-C.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0L-A.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0L-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0L-C.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-1L-A.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-1L-B.
Signal region yielding the best expected sensitivity for each point of the parameter space in the Gbb model.
Signal region yielding the best expected sensitivity for each point of the parameter space in the Gtt model for the 0-lepton channel.
Signal region yielding the best expected sensitivity for each point of the parameter space in the Gtt model for the 1-lepton channel.
Combination of two 0-lepton and 1-lepton signal regions yielding the best expected sensitivity for each point of the parameter space in the Gtt model.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.