The centrality dependence of transverse momentum distributions and yields for pi^+/-, K^+/-, p and p^bar in Au+Au collisions at sqrt(s_NN) = 200 GeV at mid-rapidity are measured by the PHENIX experiment at RHIC. We observe a clear particle mass dependence of the shapes of transverse momentum spectra in central collisions below ~ 2 GeV/c in p_T. Both mean transverse momenta and particle yields per participant pair increase from peripheral to mid-central and saturate at the most central collisions for all particle species. We also measure particle ratios of pi^-/pi^+, K^-/K^+, p^bar/p, K/pi, p/pi and p^bar/pi as a function of p_T and collision centrality. The ratios of equal mass particle yields are independent of p_T and centrality within the experimental uncertainties. In central collisions at intermediate transverse momenta ~ 1.5-4.5 GeV/c, proton and anti-proton yields constitute a significant fraction of the charged hadron production and show a scaling behavior different from that of pions.
The PHENIX experiment at RHIC has measured charged hadron yields at mid-rapidity over a wide range of transverse momentum (0.5 < p_T < 10 GeV/c) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data are compared to pi^zero measurements from the same experiment. For both charged hadrons and neutral pions, the yields per nucleon-nucleon collision are significantly suppressed in central compared to peripheral and nucleon-nucleon collisions. The suppression sets in gradually and increases with increasing centrality of the collisions. Above 4-5 GeV/c in p_T, a constant and almost identical suppression of charged hadrons and pi^zeroes is observed. The p_T spectra are compared to published spectra from Au+Au at sqrt(s_NN)=130 in terms of x_t scaling. Central and peripheral pi^zero as well as peripheral charged spectra exhibit the same x_t scaling as observed in p+p data.
The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.
We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find $dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst)$. The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.
Pair correlations between large transverse momentum neutral pion triggers (p_T=4--7 GeV/c) and charged hadron partners (p_T=3--7 GeV/c) in central (0--20%) and midcentral (20--60%) Au+Au collisions are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot dense matter. An out-of-plane trigger particle produces only 26+/-20% of the away-side pairs that are observed opposite of an in-plane trigger particle. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism in and the space-time evolution of heavy-ion collisions.
The first measurement of energy produced transverse to the beam direction at RHIC is presented. The mid-rapidity transverse energy density per participating nucleon rises steadily with the number of participants, closely paralleling the rise in charged-particle density, such that E_T / N_ch remains relatively constant as a function of centrality. The energy density calculated via Bjorken's prescription for the 2% most central Au+Au collisions at sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of 1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).
We present measurements of the near-side of triggered di-hadron correlations using neutral strange baryons ($\Lambda$, $\bar{\Lambda}$) and mesons ($K^0_S$) at intermediate transverse momentum (3 $<$ $p_T$ $<$ 6 GeV/$c$) to look for possible flavor and baryon/meson dependence. This study is performed in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV measured by the STAR experiment at RHIC. The near-side di-hadron correlation contains two structures, a peak which is narrow in azimuth and pseudorapidity consistent with correlations due to jet fragmentation, and a correlation in azimuth which is broad in pseudorapidity. The particle composition of the jet-like correlation is determined using identified associated particles. The dependence of the conditional yield of the jet-like correlation on the trigger particle momentum, associated particle momentum, and centrality for correlations with unidentified trigger particles are presented. The neutral strange particle composition in jet-like correlations with unidentified charged particle triggers is not well described by PYTHIA. However, the yield of unidentified particles in jet-like correlations with neutral strange particle triggers is described reasonably well by the same model.
We present measurements of azimuthal correlations of charged hadron pairs in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions after subtracting an underlying event using a model that includes higher-order azimuthal anisotropy $v_2$, $v_3$, and $v_4$. After subtraction, the away-side ($\Delta\phi\sim\pi)$ of the highest transverse-momentum trigger ($p_T>4$ GeV/$c$) correlations is suppressed compared to that of correlations measured in $p$$+$$p$ collisions. At the lowest associated particle $p_T$, the away-side shape and yield are modified. These observations are consistent with the scenario of radiative-jet energy loss. For the lowest-$p_T$ trigger correlations, an away-side yield exists and we explore the dependence of the shape of the away-side within the context of an underlying-event model. Correlations are also studied differentially versus event-plane angle $\Psi_n$. The angular correlations show an asymmetry when selecting the sign of the trigger-particle azimuthal angle with respect to the $\Psi_2$ event plane. This asymmetry and the measured suppression of the pair yield out of plane is consistent with a path-length-dependent energy loss. No $\Psi_3$ dependence can be resolved within experimental uncertainties.