Results on charged pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV are presented and compared to data at lower and higher energies. A rapid change of the energy dependence is observed around 30A GeV for the yields of pions and kaons as well as for the shape of the transverse mass spectra. The change is compatible with the prediction that the threshold for production of a state of deconfined matter at the early stage of the collisions is located at low SPS energies.
The inclusive production of charged hadrons in the collisions of quasi-real photons e+e- -> e+e- +X has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies from 183 to 209 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the hadrons are compared to theoretical calculations of up to next-to-leading order (NLO) in the strong coupling constant alpha{s}. The data are also compared to a measurement by the L3 Collaboration, in which a large deviation from the NLO predictions is observed.
None
Measurements of charged particle multiplicity distributions in the central rapidity region in p-p and p-α, and α-α collisions are reported. They are better fitted to the “wounded nucleon” than to the “gluon string” model. The average transverse momenta, for all three reactions, are identical (and almost independent of multiplicity) up to very high multiplicities.
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.
We report on measurements of inclusive π 0 production at c.m. energies of 53 and 63 GeV, θ ≅90°, from p-p collisions at the CERN ISR. In the range 0.2< x t <0.45 the data can be described by a form: Ed 3 σ d p 3 ∝p − (6.6±0.8) t (1−x t ) (9.6±1.0) .
We have searched for direct photons of low PT (≤1.0 GeV/c) at θc.m.=90° in pp collisions at √s =63 GeV. We used two independent methods: direct detection in NaI crystals and conversion to e+e− pairs. No signal is observed; the photon spectrum is well described by the decay of hadrons. The result is consistent with a direct low-PT photon signal reported at √s =12 GeV, but excludes a rapid growth of soft-photon production with √s .
We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.
The production of charged hadrons with high p T in αα collisions at √ s =126 GeV and pp collisions at √ s =31 and 63 GeV is compared, and the structure of the events associated with the high- p T particles is studied. The probability of finding associated particles close to the trigger particle increases strongly between √ s =31 and 63 GeV for pp collisions. For p T >2.5GeV/ c the αα/pp cross section ratio at the same energy per nucleon is measured to be 18.7 ± 2.0, to be compared with A 2 = 16, and a higher associated multiplicity is observed for αα.
This paper presents the first measurement of the inclusive J/Psi production cross section in the forward pseudorapidity region 2.5<|eta|<3.7 in ppbar collisions at sqrt(s)=1.8TeV. The results are based on 9.8 pb-1 of data collected using the D0 detector at the Fermilab Tevatron Collider. The inclusive J/Psi cross section for transverse momenta between 1 and 16 GeV/c is compared with theoretical models of charmonium production.