Measurement of the $t\bar{t}\gamma$ production cross section in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 086, 2017.
Inspire Record 1604029 DOI 10.17182/hepdata.81946

The cross section of a top-quark pair produced in association with a photon is measured in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV with $20.2$ fb$^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum $p_\mathrm{T} > 15$ GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identified as originating from a $b$-quark. The production cross section is measured in a fiducial region close to the selection requirements. It is found to be $139 \pm 7 (\mathrm{stat.}) \pm 17 (\mathrm{syst.})$ fb, in good agreement with the theoretical prediction at next-to-leading order of $151 \pm 24$ fb. In addition, differential cross sections in the fiducial region are measured as a function of the transverse momentum and pseudorapidity of the photon.

3 data tables match query

The measured fiducial cross sections. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty

differential cross section as function of the photon pT. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty

differential cross section as function of the photon pseudorapidity. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty


Measurement of $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 539, 2023.
Inspire Record 2593322 DOI 10.17182/hepdata.132903

Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.

16 data tables match query

Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

More…

Version 2
Measurement of Higgs boson decay into $b$-quarks in associated production with a top-quark pair in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 097, 2022.
Inspire Record 1967501 DOI 10.17182/hepdata.114360

The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a $b$-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.35^{+0.36}_{-0.34}$. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV.

74 data tables match query

Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.

Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.

Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of all Higgs boson candidates with reconstructed $p_T^H$ in the various bins of the dilepton (left), single-lepton resolved (middle) and boosted (right) channels.

More…

Measurement of the differential cross sections for isolated direct photon pair production in $p \bar p$ collisions at $\sqrt{s} = 1.96$ TeV

The D0 collaboration Abazov, V.M. ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 725 (2013) 6-14, 2013.
Inspire Record 1215307 DOI 10.17182/hepdata.60556

We present measurements of direct photon pair production cross sections using 8.5 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron $p \bar p$ collider. The results are presented as differential distributions of the photon pair invariant mass $d\sigma/dM_{\gamma \gamma}$, pair transverse momentum $d \sigma /dp^{\gamma \gamma}_T$, azimuthal angle between the photons $d\sigma/d\Delta \phi_{\gamma \gamma}$, and polar scattering angle in the Collins-Soper frame $d\sigma /d|\cos \theta^*|$. Measurements are performed for isolated photons with transverse momenta $p^{\gamma}_T>18 ~(17)$ GeV for the leading (next-to-leading) photon in $p_T$, pseudorapidities $|\eta^{\gamma}|<0.9$, and a separation in $\eta-\phi$ space $\Delta\mathcal R_{\gamma\gamma} > 0.4$. We present comparisons with the predictions from Monte Carlo event generators {\sc diphox} and {\sc resbos} implementing QCD calculations at next-to-leading order, $2\gamma${\sc nnlo} at next-to-next-to-leading order, and {\sc sherpa} using matrix elements with higher-order real emissions matched to parton shower.

10 data tables match query

The measured differential distribution in the two-photon mass;.

The measured differential distribution in the two-photon transverse momentum;.

The measured differential distribution in the azimuthal angular separation of the two photons;.

More…

Studies of W boson plus jets production in p\bar{p} collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 88 (2013) 092001, 2013.
Inspire Record 1221252 DOI 10.17182/hepdata.61813

We present a comprehensive analysis of inclusive W(\to e\nu)+n-jet (n\geq 1,2,3,4) production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Tevatron collider using a 3.7 fb^{-1} dataset collected by the D0 detector. Differential cross sections are presented as a function of the jet rapidities (y), lepton transverse momentum (p_T) and pseudorapidity (\eta), the scalar sum of the transverse energies of the W boson and all jets (H_T), leading dijet p_T and invariant mass, dijet rapidity separations for a variety of jet pairings for p_T-ordered and angular-ordered jets, dijet opening angle, dijet azimuthal angular separations for p_T-ordered and angular-ordered jets, and W boson transverse momentum. The mean number of jets in an event containing a W boson is measured as a function of H_T, and as a function of the rapidity separations between the two highest-p_T jets and between the most widely separated jets in rapidity. Finally, the probability for third-jet emission in events containing a W boson and at least two jets is studied by measuring the fraction of events in the inclusive W+2-jet sample that contain a third jet over a p_T threshold. The analysis employs a regularized singular value decomposition technique to accurately correct for detector effects and for the presence of backgrounds. The corrected data are compared to particle level next-to-leading order perturbative QCD predictions, predictions from all-order resummation approaches, and a variety of leading-order and matrix-element plus parton-shower event generators. Regions of the phase space where there is agreement or disagreement with the data are discussed for the different models tested.

42 data tables match query

Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of leading jet rapidity for events with one or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.

Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of second jet rapidity for events with two or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.

Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of third jet rapidity for events with three or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.

More…

Measurement of the differential photon+ c-jet cross section and the ratio of differential photon+ c and photon+ b cross sections in proton-antiproton collisions at sqrt(s) = 1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 719 (2013) 354-361, 2013.
Inspire Record 1191428 DOI 10.17182/hepdata.61727

We present measurements of the differential cross section $d\sigma/dp_{T}^{\gamma}$ for the associated production of a $c$-quark jet and an isolated photon with rapidity $|y^{\gamma}|< 1.0$ and transverse momentum $30 < p_{T}^{\gamma} < 300$ GeV. The $c$-quark jets are required to have $|y^{jet}| < 1.5$ and $p_{T}^{jet} >15$ GeV. The ratio of differential cross sections for photon+ c and photon+ b production as a function of $p_{T}^{\gamma}$ is also presented. The results are based on data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider at $\sqrt{s}=$1.96 TeV. The obtained results are compared to next-to-leading order perturbative QCD calculations using various parton distribution functions, to predictions based on the $k_{T}$-factorization approach, and to predictions from the Sherpa and Pythia Monte Carlo event generators.

2 data tables match query

The differential cross section as a function of PT for the production of GAMMA+ Charmed JET in PBAR P collisions at a centre of mass energy of 1.96 TeV.

The ratio of the (GAMMA+ CJET) to (GAMMA+ BJET) cross section in bins of the GAMMA PT.


Measurement of differential $t\bar{t}$ production cross sections in $p\bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 90 (2014) 092006, 2014.
Inspire Record 1278493 DOI 10.17182/hepdata.64755

The production of top quark-antiquark pair events in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV is studied as a function of the transverse momentum and absolute value of the rapidity of the top quarks as well as of the invariant mass of the $t\bar{t}$ pair. We select events containing an isolated lepton, a large imbalance in transverse momentum, and four or more jets with at least one jet identified to originate from a $b$ quark. The data sample corresponds to 9.7 fb$^{-1}$ of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Observed differential cross sections are consistent with standard model predictions.

4 data tables match query

The inclusive TOP TOPBAR production cross section.

The differential cross section as a function of the invariant mass of the top quark-antiquark pair, M(TOP + TOPBAR).

The differential cross section as a function of the absolute rapidity of the top quark/antiquark, ABS(YRAP(TOP/TOPBAR)).

More…

Comparison of the Z/gamma*+jets to gamma+jets cross sections in pp collisions at sqrt(s)= 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2015) 128, 2015.
Inspire Record 1372730 DOI 10.17182/hepdata.72989

A comparison of the differential cross sections for the processes Z/gamma* + jets and photon (gamma) + jets is presented. The measurements are based on data collected with the CMS detector at sqrt(s) = 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The differential cross sections and their ratios are presented as functions of pt. The measurements are also shown as functions of the jet multiplicity. Differential cross sections are obtained as functions of the ratio of the Z/gamma* pt to the sum of all jet transverse momenta and of the ratio of the Z/gamma* pt to the leading jet transverse momentum. The data are corrected for detector effects and are compared to simulations based on several QCD calculations.

14 data tables match query

The Z boson differential transverse momentum cross-section in an inclusive $Z/\gamma^{*}+\mathrm{jets}$, $N_{\mathrm{jets}} \geq1$ selection.

The $\gamma$ differential transverse momentum cross-section in an inclusive $\gamma+\mathrm{jets}$, $N_{\mathrm{jets}} \geq1$ selection for central rapidities $\vert y_{\gamma} \vert > 1.4$.

The Z boson differential transverse momentum cross-section in an inclusive $Z/\gamma^{*}+\mathrm{jets}$, $N_{\mathrm{jets}} \geq2$ selection.

More…

Inclusive b-jet production in pp collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 04 (2012) 084, 2012.
Inspire Record 1089835 DOI 10.17182/hepdata.58503

The inclusive b-jet production cross section in pp collisions at a center-of-mass energy of 7 TeV is measured using data collected by the CMS experiment at the LHC. The cross section is presented as a function of the jet transverse momentum in the range 18 < pT < 200 GeV for several rapidity intervals. The results are also given as the ratio of the b-jet production cross section to the inclusive jet production cross section. The measurement is performed with two different analyses, which differ in their trigger selection and b-jet identification: a jet analysis that selects events with a b jet using a sample corresponding to an integrated luminosity of 34 inverse picobarns, and a muon analysis requiring a b jet with a muon based on an integrated luminosity of 3 inverse picobarns. In both approaches the b jets are identified by requiring a secondary vertex. The results from the two methods are in agreement with each other and with next-to-leading order calculations, as well as with predictions based on the PYTHIA event generator.

12 data tables match query

B-jet cross section from the 'jet' analysis.

B-jet cross section from the 'muon' analysis.

B-jet cross section extrapolated from the 'muon' analysis.

More…

Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 714 (2012) 136-157, 2012.
Inspire Record 1113442 DOI 10.17182/hepdata.58908

The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.

3 data tables match query

The measured Lambda/B integrated cross section and the ratio of anti-Lambda/B to Lambda/B cross sections.

The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B transverse momentum The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.

The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B absolute rapidity. The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.