Two-particle Bose-Einstein correlations in $pp$ collisions at $\mathbf {\sqrt{s} =}$ 0.9 and 7 TeV measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 466, 2015.
Inspire Record 1346844 DOI 10.17182/hepdata.70016

The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\rm T}>$ 100 MeV and $|\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 $\mu$b$^{-1}$, 190 $\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.

0 data tables match query

Measurement of QCD jet broadening in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 44 (1991) 601-616, 1991.
Inspire Record 314647 DOI 10.17182/hepdata.22832

A measurement of the QCD jet-broadening parameter 〈QT〉 is described for high-ET jet data in the central calorimeter of the Collider Detector at Fermilab. As an alternate approach to clustering analysis, this method involves the use of a global event parameter which is free from the ambiguities associated with the definition and separation of individual clusters. The parameter QT is defined as the scalar sum of the transverse momentum perpendicular to the transverse thrust axis. Parton-level QCD predictions are made for 〈QT〉 as a function of ET, the total transverse energy in the events, and suggest that a measurement would show a dependence on the running of the strong coupling constant αs. Comparisons are made to first-order QCD parton-level calculations, as well as to fully evolved and hadronized leading-log simulations. The data are well described by the QCD predictions.

0 data tables match query