Measurement of $\Lambda$(1520) production in pp collisions at $\sqrt{s}$ = 7 TeV and p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adhya, S.P. ; et al.
Eur.Phys.J.C 80 (2020) 160, 2020.
Inspire Record 1752831 DOI 10.17182/hepdata.115139

The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.

12 data tables

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in inelastic pp collisions at $\sqrt{s}$ $\mathrm{=}$ 7 TeV.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in NSD p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV in multiplicity interval 0--20\%. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

More…

Measurement of charged jet cross section in $pp$ collisions at ${\sqrt{s}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.D 100 (2019) 092004, 2019.
Inspire Record 1733689 DOI 10.17182/hepdata.91239

The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of $5<p_\mathrm{T}<100\ \mathrm{GeV}/c$ in pp collisions at the center-of-mass energy of $\sqrt{s} = 5.02\ \mathrm{TeV}$ with the ALICE detector. The jets are reconstructed using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R=0.2$, $0.3$, $0.4$, and $0.6$ in the pseudorapidity range $|\eta|< 0.9-R$. The charged jet cross sections are compared with the leading order (LO) and to next-to-leading order (NLO) perturbative Quantum ChromoDynamics (pQCD) calculations. It was found that the NLO calculations agree better with the measurements. The cross section ratios for different resolution parameters were also measured. These ratios increase from low $p_\mathrm{T}$ to high $p_\mathrm{T}$ and saturate at high $p_\mathrm{T}$, indicating that jet collimation is larger at high $p_\mathrm{T}$ than at low $p_\mathrm{T}$. These results provide a precision test of pQCD predictions and serve as a baseline for the measurement in Pb$-$Pb collisions at the same energy to quantify the effects of the hot and dense medium created in heavy-ion collisions at the LHC.

4 data tables

Fig. 3: Fully corrected charged jet differential cross sections in pp collisions at $\\sqrt{s}$ = 5.02 TeV. Statistical uncertainties are displayed as vertical error bars. The total systematic uncertainties are shown as shaded bands around the data points. Data are scaled to enhance visibility.

Fig. 6: Charged jet cross section ratios for $\\sigma$(R = 0.2)/$\\sigma$(R = 0.4) (Red) and $\\sigma$(R = 0.2)/$\\sigma$(R = 0.6). The systematic uncertainty of the cross section ratio is indicated by a shaded band drawn around data points.

Charged jet differential cross sections with UE subtraction in pp collisions at $\sqrt{s}$ = 5.02 TeV. Statistical uncertainties are displayed as vertical error bars. The total systematic uncertainties are shown as shaded bands around the data points. Data are scaled to enhance visibility.

More…

Energy dependence of exclusive $J/\psi$ photoproduction off protons in ultra-peripheral p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 79 (2019) 402, 2019.
Inspire Record 1693305 DOI 10.17182/hepdata.89306

The ALICE Collaboration has measured the energy dependence of exclusive photoproduction of $J/\psi$ vector mesons off proton targets in ultra-peripheral p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV. The e$^+$e$^-$ and $\mu^+\mu^-$ decay channels are used to measure the cross section as a function of the rapidity of the $J/\psi$ in the range $-2.5 < y < 2.7$, corresponding to an energy in the $\gamma$p centre-of-mass in the interval $40 < W_{\gamma\mathrm{p}}<550$ GeV. The measurements, which are consistent with a power law dependence of the exclusive $J/\psi$ photoproduction cross section, are compared to previous results from HERA and the LHC and to several theoretical models. They are found to be compatible with previous measurements.

1 data table

Differential cross sections as a function of rapidity for exclusive J/PSI photoproduction off protons in ultra-peripheral p-Pb collisions. The corresponding J/PSI photoproduction cross sections in bins of the GAMMA-P centre-of-mass, W(GAMMA P), are also presented.


Suppression of $\Lambda(1520)$ resonance production in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024905, 2019.
Inspire Record 1672806 DOI 10.17182/hepdata.84284

The production yield of the $\Lambda(1520)$ baryon resonance is measured at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE detector at the LHC. The measurement is performed in the $\Lambda(1520)\rightarrow {\rm pK}^{-}$ (and charge conjugate) hadronic decay channel as a function of the transverse momentum ($p_{\rm T}$) and collision centrality. The $p_{\rm T}$-integrated production rate of $\Lambda(1520)$ relative to $\Lambda$ in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at LHC and the first evidence of $\Lambda(1520)$ suppression in heavy-ion collisions. The measured $\Lambda(1520)/\Lambda$ ratio in central collisions is smaller than the value predicted by the statistical hadronisation model calculations. The shape of the measured $p_{\rm T}$ distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances.

5 data tables

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in the 0-20% centrality class. The uncertainty 'syst,uncorrelated' indicates the systematic uncertainty after removing the contributions common to all centrality classes

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in the 20-50% centrality class. The uncertainty 'syst,uncorrelated' indicates the systematic uncertainty after removing the contributions common to all centrality classes

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in the 50-80% centrality class. The uncertainty 'syst,uncorrelated' indicates the systematic uncertainty after removing the contributions common to all centrality classes

More…