Experimental study study of antiproton-proton annihilation into a pair of charged Pi-Mesons or K-Mesons for incident antiproton mementa in the range from 0.72 GeV/c to 2.62 GeV/c

Fong, Douglas G. ; Pine, Jerome ;
RX-294, 1968.
Inspire Record 53368 DOI 10.17182/hepdata.50355

The cross sections for the two antiproton-proton annihilation-in-flight modes, ˉp + p → π+ + π- ˉp + p → k+ + k- were measured for fifteen laboratory antiproton beam momenta ranging from 0.72 to 2.62 GeV/c. No magnets were used to determine the charges in the final state. As a result, the angular distributions were obtained in the form [dσ/dΩ (ΘC.M.) + dσ/dΩ (π – ΘC.M.)] for 45 ≲ ΘC.M. ≲ 135°. A hodoscope-counter system was used to discriminate against events with final states having more than two particles and antiproton-proton elastic scattering events. One spark chamber was used to record the track of each of the two charged final particles. A total of about 40,000 pictures were taken. The events were analyzed by measuring the laboratory angle of the track in each chamber. The value of the square of the mass of the final particles was calculated for each event assuming the reaction ˉp + p → a pair of particles with equal masses. About 20,000 events were found to be either annihilation into π ±-pair or k ±-pair events. The two different charged meson pair modes were also distinctly separated. The average differential cross section of ˉp + p → π+ + π- varied from ~ 25 µb/sr at antiproton beam momentum 0.72 GeV/c (total energy in center-of-mass system, √s = 2.0 GeV) to ~ 2 µb/sr at beam momentum 2.62 GeV/c (√s = 2.64 GeV). The most striking feature in the angular distribution was a peak at ΘC.M. = 90° (cos ΘC.M. = 0) which increased with √s and reached a maximum at √s ~ 2.1 GeV (beam momentum ~ 1.1 GeV/c). Then it diminished and seemed to disappear completely at √s ~ 2.5 GeV (beam momentum ~ 2.13 GeV/c). A valley in the angular distribution occurred at cos ΘC.M. ≈ 0.4. The differential cross section then increased as cos ΘC.M. approached 1. The average differential cross section for ˉp + p → k+ + k- was about one third of that of the π±-pair mode throughout the energy range of this experiment. At the lower energies, the angular distribution, unlike that of the π±-pair mode, was quite isotropic. However, a peak at ΘC.M. = 90° seemed to develop at √s ~ 2.37 GeV (antiproton beam momentum ~ 1.82 GeV/c). No observable change was seen at that energy in the π±-pair cross section. The possible connection of these features with the observed meson resonances at 2.2 GeV and 2.38 GeV, and its implications, were discussed.

2 data tables

No description provided.

No description provided.


Photoproduction of $\pi^0$ in the Backward Direction

Buschhorn, G. ; Heide, P. ; Kotz, U. ; et al.
Phys.Rev.Lett. 20 (1968) 230-232, 1968.
Inspire Record 54459 DOI 10.17182/hepdata.21735

None

1 data table

No description provided.


Photoproduction of positive pions at backward angles in the energy range 1-3 gev

Alvarez, R.A. ; Cooperstein, G. ; Kalata, K. ; et al.
Phys.Rev.D 1 (1970) 1946-1960, 1970.
Inspire Record 61718 DOI 10.17182/hepdata.25170

The cross section for photoproduction of single π+ from hydrogen has been measured at laboratory angles of 110°, 127.5° and 152°, between 0.9- and 3.2-GeV incident photon energy. Measurements have been made with approximately 15% statistical accuracy at about 40 photon energies at each angle. The results agree well with the previous Caltech data of Thiessen. The cross section shows a rapid drop with increasing energy with superimposed bumps or shoulders corresponding to the N(1688), Δ(1920), and Δ(2420). A shallow minimum is observed at the N(2190) resonance.

1 data table

No description provided.


Differential cross-sections for k+- n charge-exchange scattering in deuterium between 0.64 and 1.51 gev/c

Giacomelli, G. ; Lugaresi-Serra, P. ; Minguzzi-Ranzi, A. ; et al.
Nucl.Phys.B 42 (1972) 437-444, 1972.
Inspire Record 75128 DOI 10.17182/hepdata.32917

We present results on the differential cross sections for the process K + n → K 0 p extracted from the reaction K + d → K 0 pp measured at 13 momenta between 0.64 and 1.51 GeV/ c .

2 data tables

THESE TOTAL CROSS SECTIONS WERE PRESENTED WITH MORE EXPERIMENTAL DETAILS IN G. GIACOMELLI ET AL., NP B37, 577 (1972).

REACTION HAS A SPECTATOR PROTON. THESE ARE NOT FREE NEUTRON CROSS SECTIONS. A 250 MEV/C MOMENTUM CUT IS APPLIED TO THE SPECTATOR MOMENTUM AND D(SIG)/DOMEGA THEN NORMALIZED TO THE UNCUT TOTAL CROSS SECTION FOR K+ DEUT --> K0 P P.


Differential cross-sections for K+ n elastic scattering between 0.64-GeV/c and 1.51-GeV/c

The BGRT collaboration Giacomelli, G. ; Lugaresi-Serra, P. ; Mandrioli, G. ; et al.
Nucl.Phys.B 56 (1973) 346-355, 1973.
Inspire Record 84067 DOI 10.17182/hepdata.32566

We present experimental results on the K + n → K + n differential cross sections measured in deuterium at 13 momenta between 0.64 and 1.51 GeV/ c .

1 data table

REACTION HAS A SPECTATOR PROTON. WHILE SOME DEUTERIUM CORRECTIONS HAVE BEEN APPLIED, THESE DATA ARE NOT DIVIDED BY THE DEUTERIUM FORM FACTOR APPEARING IN THE IMPULSE APPROXIMATION.


K0(L) p ---> K0(S) p SCATTERING FROM 1-GeV/c TO 10-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.D 9 (1974) 1939, 1974.
Inspire Record 81133 DOI 10.17182/hepdata.21986

The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.

22 data tables

No description provided.

No description provided.

No description provided.

More…

A Study of the Reactions anti-K0 p ---> Lambda pi+ and anti-K0 p ---> Sigma0 pi+ from 1-GeV/c to 12-GeV/c

Yamartino, R. ; Brandenburg, G.W. ; Johnson, William B. ; et al.
Phys.Rev.D 10 (1974) 9, 1974.
Inspire Record 91647 DOI 10.17182/hepdata.24927

Cross sections, differential cross sections, and hyperon polarization results are presented for the reactions K¯0p→Λπ+ and K¯0p→Σ0π+ in the momentum interval 1 to 12 GeV/c. Emphasis is placed on the comparison of Λ and Σ channels, and on the momentum dependences of the data. In particular, the Λ polarization data are consistent with being independent of energy above 2 GeV/c; and the slopes of the forward cross sections are found to increase toward the slope values for the line-reversed reactions πp→K(Λ,Σ) as energy increases.

27 data tables

No description provided.

No description provided.

RESONANCE REGION CROSS SECTIONS.

More…

The Photoproduction of Neutral Pions from Protons Between 0.7-GeV and 1.7-GeV

Barton, J.S. ; Booth, P.S.L. ; Carroll, L.J. ; et al.
Nucl.Phys.B 84 (1975) 449-466, 1975.
Inspire Record 90496 DOI 10.17182/hepdata.32128

Measurements of differential cross sections for pi-zero photoproduction from protons have been made at angles between 60° and 140° c.m. in the photon energy range 0.7 GeV to 1.7 GeV. The data are compared with the rits provided by three recent partial-wave analyses of pion photoproduction and some significant discrepancies observed.

9 data tables
More…

Study of the anti-K0 p --> Lambda pi+, Sigma0 pi+ Reactions in the Energy Range of 1.5-GeV to 2.3-GeV

Burkhardt, E. ; Pfeiffer, A. ; Putzer, A. ; et al.
Nucl.Phys.B 99 (1975) 365-375, 1975.
Inspire Record 98822 DOI 10.17182/hepdata.31832

The total and differential cross sections of the K¯0p→Λπ+ and K¯0p→∑0π+ reactions have been measured in the centre-of-mass energy range of l.5 to 2.3 GeV. Using our K¯0p→∑0π+ data as well as available cross-section data of isospin related channels, we have calculated the total I=0K¯N→∑π cross section as function of energy. The results are compared with predictions obtained from K¯N phase-shift analyses.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Rho Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 113 (1976) 53-92, 1976.
Inspire Record 108749 DOI 10.17182/hepdata.35708

The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.

10 data tables

DIPION CHANNEL CROSS SECTION.

THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).

No description provided.

More…