Spin alignment and violation of the OZI rule in exclusive $\omega$ and $\phi$ production in pp collisions

The COMPASS collaboration Adolph, C. ; Akhunzyanov, R. ; Alexeev, M.G. ; et al.
Nucl.Phys.B 886 (2014) 1078-1101, 2014.
Inspire Record 1298025 DOI 10.17182/hepdata.64185

Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.

5 data tables

Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI). R(PHI/OMEGA) is multiplied by 100 to improve readability.

Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI) for different cuts on the vector meson momentum P(V). R(PHI/OMEGA) is multiplied by 100 to improve readability.

Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production, in the latter case with various cuts on P(V). The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.

More…

Measurement of the spin density matrix for the rho0, K*(892)0 and Phi produced in Z0 decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 406 (1997) 271-286, 1997.
Inspire Record 444150 DOI 10.17182/hepdata.47452

The spin density matrix elements for the ϱ 0 , K ∗0 (892) and F produced in hadronic Z 0 decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K ∗0 (892) and F in the region x p ≤ 0.3 ( x p = p p beam ), where ϱ 00 = 0.33 ± 0.05 and ϱ 00 = 0.30 ± 0.04, respectively. In the fragmentation region, x p ≥ 0.4, there is some indication for spin alignment of the ϱ 0 and K ∗0 (892), since ϱ 00 = 0.43 ± 0.05 and ϱ 00 = 0.46 ± 0.08, respectively. These values are compared with those found in meson-induced hadronic reactions. For the F, ϱ 00 = 0.30 ± 0.04 for x p ≥ 0.4 and 0.55 ± 0.10 for x p ≥ 0.7. The off-diagonal spin density matrix element ϱ 1-1 is consistent with zero in all cases.

3 data tables

Helicity density matrices elements. The statistical and systematic errors are combined quadratically.

Helicity density matrices elements. The statistical and systematic errors are combined quadratically.

Helicity density matrices elements. The statistical and systematic errors are combined quadratically.


Inclusive Production of Strangeness $S = \pm 1$ Vector and Tensor Resonances on $K^- P$ Interactions at 32-{GeV}/$c$

The French-Soviet & CERN-Soviet collaborations Arestov, Yu. ; Borovikov, A. ; Kozlovsky, E. ; et al.
Z.Phys.C 6 (1980) 101-108, 1980.
Inspire Record 154719 DOI 10.17182/hepdata.11053

We present final results on the inclusive production of the\(\bar K^{*0} (890)\),K*−(890),K*0(890),K*−(890),K*−(1420), and\(\bar K^{*0} (1420)\) resonances inK−p interactions at 32 GeV/c. Total cross sections and invariantx-distributions are determined. Inclusive cross sections of\(\bar K^{*\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{o} } (890)\) amount to ≃4 mb each, of\(\bar K^{*\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{o} } (1420)\) to ≃1 mb and ofK*0(890) to ≃0.8 mb. These values are in agreement with additive quark model predictions. All strangenessS=−1 resonances are predominantly produced in the forward hemisphere, the tensor mesons being more peripherally produced than the vector ones. The\(\bar K^{*\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{o} } (890)\) density matrix elements andt-distributions are obtained. The unnatural spin-parity exchange contribution to inclusive\(\bar K^{*\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{o} } (890)\) production amounts to ≳60% at |t|<0.4 GeV2 and decreases with increasing |t|. Whenever relevant, a comparison is also made with available data at other energies.

11 data tables

No description provided.

No description provided.

No description provided.

More…