The reactione+e−→µ+µ− has been studied at centre of mass energies between 35.0 and 46.8 GeV using the TASSO detector at PETRA. We present measurements of the forward-backward charge asymmetry (Aμμ) and cross section σμμ for this reaction at three energies. At 35.0 GeV we obtain a cross section relative to the QED prediction ofRμμ=σμμ/σo=0.932±0.018±0.044 andAμμ=(−10.6−2.3+2.2±0.5)%. At 38.3 GeV we findRμμ=0.951±0.072−0.057+0.063 andAμμ=(+1.7−8.6+8.5±0.5)%. At 43.6 GeV we measureRμμ=0.921±0.037±0.055 andAμμ=(−17.6−4.3+4.4±0.5)%. Our results are in good agreement with the predictions of the standard model. Including previous TASSO data we present improved determinations of muonic electroweak parameters. We also report on lower limits of possible contributions from contact interactions.
No description provided.
The reaction e + e − → τ + τ − has been studied at centre of mass energies between 14.0 and 46.8 GeV with the CELLO detector at the PETRA e + e − collider. We present results for the cross section σ τ and the charge asymmetry A τ . The results are in good agreement with the standard model. We have also measured the topological decay rates BR 1 , BR 3 and BR 5 for the inclusive decay of the τ lepton into one, three and five charge particles. The results confirm and improve earlier CELLO measurements at other energies. We find for the combined values at all energies BR 1 = (84.9 ± 0.4 ± 0.3)%, BR 3 = (15.0 ± 0.4 ± 0.3)% and BR 5 = (0.16 ± 0.13 ± 0.04)%.
Corrected for radiative effects and background contributions.
The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.
Forward-backward asymmetry.
The angular distributions of the reactione+e−→μ+μ− ande+e+→τ+τ− have been measured between\(\sqrt s= 50\) and 60.8 GeV with the VENUS detector at TRISTAN. The average total cross section and the forward-backward charge asymmetry for μ-pair production are observed to be 28.3±1.4±0.8 pb and (−29.0−4.8+5.0±0.5)%, and those for τ-pair production are 27.6±1.7±1.0 pb and (−32.8−6.2+6.4±1.5)% at\(\langle \sqrt s \rangle \). These values are consistent with the predictions of the standard model of electroweak interactions.
No description provided.
No description provided.
No description provided.
The production and decay of τ-pairs was studied with the JADE detector at PETRA at center-of-mass energies of 30 ⩽√ s ⩽ 46.78 GeV. The total production cross section for τ-pairs agreed with QED predictions to order α 3 . Lower limits on QED cut-off parameters of Λ + > 285 GeV and Λ − > 210 GeV at 95% confidence level were ontained. The decay branching fractions into one and three charged particles were determined to be (86.1 ± 0.5 ± 0.9)% and (13.6±0.5 ±0.80)%. In the angular distributions a forward-backward asymmetry was observed, from which the axial-vector weak charge to the τ was determined to be a τ = −0.74 ± 0.22 in agreement with the standard model. An analysis of the process e + e − → τ + τ − γ showed agreement with QED calculations to O(α 3 ).
Forward-backward asymmetry determined from fit to angular distribution of form N*(1 + cos(theta)**2 + (3/8)*A*cos(theta)).
Study of radiative tau events.
We report on total cross section and forward backward charge asymmetry measurements of the reactione+e− → τ+τ− at centre of mass energies of 35.0 GeV and 42.4 GeV using the TASSO detector. Including previous data an analysis in terms of electroweak parameters of the standard model is presented, and lower limits on mass scale parameters of residual contact interactions are given. A combined analysis of electroweak couplings using all our results on leptonic reactionse+e−→l+l− has been performed.
No description provided.
Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).
Combined MU and TAU asymmetry. See PL 114B(1982)282 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1234> RED = 1234 </a>) and ZP C14(1982)283 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1245> RED = 1245 </a>) for individual asymmetry measurements.
The reaction (e+e−→μ+μ−) has been measured between\(\sqrt S= 14.0\) and\(\sqrt S= 36.4\). The total cross section result is in good agreement with the QED prediction and the following Λ values have been obtained:Λ+=186 GeV,Λ−=101 GeV. The angular distribution at high energy (\(\left( {\left. {\left\langle {\sqrt S } \right.} \right\rangle= 34.2 GeV} \right)\)) shows a fitted charge asymmetry of −0.064±0.064 in agreement with theW-S model prediction of −0.092, corresponding to an axial coupling parametera2=4ga2=0.69±0.69.
Errors include contribution from systematics. Result based on fit(1 + cos(theta)**2 + q cos(theta)) to corrected angular distribution.
We have studied 419 τ pair events produced in the reactione+e−→τ+ τ− at a c.m. energy of 34.6 GeV. We measure the cross section and angular distribution, as well as the decay branching ratios. The production characteristics are consistent with the Standard Electroweak Model predictions of γ andZ0 interference. The branching ratios are generally consistent with the τ decaying according to standard weak interaction principles, but we observe somewhat more decays resulting in single charged hadrons plus neutrals than are predicted by present theory.
Asymmetry based on fits to angular distribution.
Differential cross section data of the CELLO experiment on pair production of muons, taus, and heavy quarks ine+e−-annihilation are presented and analysed, together with our data on Bhabha scattering, in terms of compositeness effects characterized by the mass scale Λ. We discuss difficulties in the combination of limits Λ from different experiments. The appropriate parameter to combine different results turns out to be ɛ=±1/Λ2, which is in contrast to Λ Gaussian distributed.
Charge asymmetry for charm quarks derived from the differential cross section data.
Charge asymmetry for bottom quarks derived from the differential cross section data.