None
Forward-backward asymmetry calculated from number of events from combined 1989 and 1990 data.
Forward-backward asymmetry resulted from a maximum-likelihood fit to the COS(THETA) distribution from combined 1989 and 1990 data.
Forward-backward asymmetry resulted from a maximum-likelihood fit to the COS(THETA) distribution from combined 1989 and 1990 data.
New measurements of the hadronic and leptonic cross sections and of the leptonic forward-backward asymmetries ine+e− collisions are presented. The analysis includes data recorded up to the end of 1991 by the OPAL experiment at LEP, with centre-of-mass energies within ±3 GeV of the Z0 mass. The results are based on a recorded total of 454 000 hadronic and 58 000 leptonic events. A model independent analysis of Z0 parameters based on an extension of the improved Born approximation is presented leading to test of lepton universality and an interpretation of the results within the Standard Model framework. The determination of the mass and width of the Z0 benefit from an improved understanding of the LEP energy calibration.
Additional systematic error of 0.003.
Forward-backward asymmetry from counting number of events. Additional systematic error of 0.003.
Forward-backward asymmetry from maximum likelihood fit to cos(theta) distribution. Additional systematic error of 0.003.
This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.
The forward-backward charge asymmetry in E+ E- --> MU+ MU- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.95 and THETA(C=ACOL) < 15 degrees, and the energy of each fermion required to be greaterthan 6 GeV. Statistical errors only are shown. Also given are the asymmetries a fter correction for the beam energy spread to correspond to the physical asymmetry at the central value of SQRT(S).
The forward-backward charge asymmetry in E+ E- --> TAU+ TAU- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.90 andTHETA(C=ACOL) < 15 degrees, and the energy of each fermion required to be great er than 6 GeV. Statistical errors only are shown. Also given are the asymmetriesafter correction for the beam energy spread to correspond to the physical asymm etry at the central value of SQRT(S).
The forward-backward charge asymmetry in E+ E- --> E+ E- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.70 and THETA(C=ACOL) < 10 degrees, and the energy of each fermion required to be greater than 6 GeV. Statistical errors only are shown. Also given are the asymmetries after correction for the beam energy spread to correspond to the physical asymmetryat the central value of SQRT(S).
The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0 . The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol− = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be a ̌ 2 ol v ̌ 2 ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants a ̌ 2 ol = 0.998±0.024 and v ̌ 2 ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2 θ w are found to be 0.998±0.024 and 0.233 +0.045 −0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2 θ w , the results sin 2 θ SM w = 0.233 +0.007 −0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: R z = 21.72 +0.71 −0.65 .
Forward-backward asymmetry corrected for kinematic cuts. Errors have systematics folded.
Forward-backward asymmetry. Statistical errors only.
Forward-backward asymmetry. Statistical errors only.