Measurements of the total cross section have been performed at the ISR with c.m. energies between 23.5 GeV and 62.5 GeV. Two independent experimental methods have been applied, a measurement of total interaction rate and of small angle elastic scattering. Both experiments give consistent results showing that the total cross section increases by (11.8±1.5) % over the ISR energy range. This experiment has also measured the slope of the forward diffraction peak in elastic scattering at small momentum transfer. The elastic cross section shows the same relative rise as the total cross section, and the ratio λ of elastic to total cross section approaches a constant value of λ =0.178±0.003.
TOTAL ELASTIC CROSS SECTION FROM INTEGRATING THE PARAMETRIZED DIFFERENTIAL CROSS SECTION, USING ALL OPTICAL POINT DATA AND AT LARGE -T RESULTS OF OTHER EXPERIMENTS.
.
.
The real part of the proton proton elastic scattering amplitude has been determined from its interference with the Coulomb amplitude at total centre-of-mass energies up to 62 GeV. The observed steady increase of ϱ with energy indicates that the total proton proton cross section continues to increase well beyond this energy.
No description provided.
USING SIG AND SLOPE OBTAINED FROM INTERPOLATIONS OF PREVIOUS MEASUREMENTS.
New experimental results are presented on proton-proton elastic scattering at centre-of-mass energies s =23 GeV and s =62 GeV . The data are obtained using the Split Field Magnet detector at the CERN Intersecting Storage Rings. The absolute differential cross-sections show an energy-dependent behaviour. The position of the diffraction minimum changes from t =(−1.44±0.02)GeV 2 at 23 GeV to (−1.26±0.03)GeV 2 at 62 GeV. The cross-section at the second maximum is increasing with s . The connection of these observations with the hypothesis of “geometrical scaling” is discussed.
63 K EVENTS.
380 K EVENTS.
Final results of our measurements of elastic proton-proton scattering at the CERN Intersecting Storage Rings (ISR) for c.m. energies √ s from 23 to 63 GeV and momentum transfers | t | from 0.8 to 10 GeV 2 are presented. Absolute differential cross sections have been obtained using the split-field magnet detector facility (SFM) at the five standard energies for integrated luminosities ranging from 0.3 to 4.9 (pb) −1 . The rising total cross section is found to define a scale for diffractive phenomena near the forward peak, including the position of the diffraction minimum near t = −1.4 GeV 2 . The cross section at the minimum is strongly energy dependent, approximately as the ratio of the real to imaginary part of the scattering amplitude in the forward direction. The phase of the scattering amplitude is found to change sign near the minimum. The component of diffraction scattering beyond the second maximum has a much weaker t -dependence than expected in simple eikonal or constituent pictures connecting this region to the forward peak. A further break in slope is observed near t = −6 GeV 2 . There is no evidence for another minimum for t values up to 10 GeV 2 .
No description provided.
No description provided.
No description provided.
The properties of the diffractive peak observed in the mass spectra of systems recoiling against observed high-momentum protons emerging from pp collisions at the CERN ISR have been investigated. The cross sections in this peak have been found to have a steep t dependence which flattens out as | t | increases. The high mass side of the peak varies approximately as 1/ M 2 (where M is the missing mass of the recoiling system) and scales well in terms of the variable M 2 / s . The position of the maximum has been observed to move to lower values of M 2 / s as the kinematic boundary of this variable decreases with increasing s . The measured cross sections, integrated up to M 2 / s =0.05, rise by (15±5)% over the s range 549 to 1464 GeV 2 .
No description provided.
No description provided.
No description provided.
We have measured the differential cross section for pp and p̄p elastic scattering at √ s = 31, 53 and 62 GeV in the interval 0.05 < | t | < 0.85 GeV 2 at the CERN ISR using the Split Field Magnet detector. At 53 and 62 GeV, for 0.17 < | t | < 0.85 GeV 2 both pp and p̄p data show simple exponential behaviour in t ; at √ s = 31 GeV the data for 0.05 < | t | < 0.85 GeV 2 are consistent with a change in slope near | t | = 0.15 GeV 2 .
ERRORS CONTAIN BOTH STATISTICAL AND T-DEPENDENT SYSYEMATIC ERRORS.
No description provided.
LOCAL SLOPE PARAMETERS BASED ON QUADRATIC EXPONENTIAL FIT.
We measured the elastic scattering of αα at s = 126 GeV and of α p at s = 89 GeV . For αα , the differential cross section d σ /d t has a diffractive pattern minima at | t | = 0.10 and 0.38 GeV 2 . At small | t | = 0.05−0.07 GeV 2 , this cross section behaves like exp[(100 ± 10) t ]. Extrapolating a fit to the data to the optical point, we obtained for the total cross section α tot ( αα ) = 250 ± 50 mb and an integrated elastic cross section σ e1 ( αα ) = 45 ± mb. Another method of estimating σ tot ( αα ), based on measuring the interaction rate, yielded 295 ± 40 mb. For α p, d σ /d t has aminimum at | t | = 0.20 GeV 2 , and for 0.05 < | t | < 0.18 GeV 2 behaves like exp[(41 ± 2) t ]. Extrapolating this slope to | t | = 0, we found σ tot ( α p) = 130 ± 20 and σ e1 ( α p) = 20 ± 4mb. Results on pp elastic scattering at s = 63 GeV agree with previous ISR experiments.
No description provided.
Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies s =30.6, 52.8 and 62.3 GeV at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at s =23.5 GeV . Using the optical theorem, total cross sections are obtained with an accuracy of about 0.5% for proton-proton scattering and about 1% for antiproton-proton scattering. The measurement of the interference of the Coulomb scattering and the hadronic scattering permits a determination of the ratio of the real-to-imaginary part of the forward hadronic scattering amplitude. Also presented are measurements of the hadronic slope parameter.
No description provided.
No description provided.
No description provided.
Antiproton-proton and proton-proton small-angle elastic scattering have been measured for centre-of-mass energies √ s = 30.7 and 62.5 GeV at the CERN Intersecting Storage Rings (ISR). Antiproton-proton and proton-proton total cross sections are obtained using the optical theorem. The measurement of the Coulomb scattering and its interference with the nuclear scattering allows a determination of the ratio of the real-to-imaginary part of the forward nuclear scattering amplitude. Also presented are measurements for the nuclear slope parameter at √ s = 62.5 GeV. Our new results reinforce the conclusions drawn recently from our measurements at √ s = 52.8 GeV. In particular, the pp̄ total cross section is rising at ISR energies and should continue to rise well beyond these energies.
DATA REQUESTED FROM AUTHORS.
RESULTS OF FITS.
No description provided.