Version 2
Measurement of Spin-Density Matrix Elements in $\rho(770)$ Production with a Linearly Polarized Photon Beam at $E_\gamma = 8.2\,-\,8.8\,\text{GeV}$

The GlueX collaboration Adhikari, S. ; Afzal, F. ; Akondi, C.S. ; et al.
Phys.Rev.C 108 (2023) 055204, 2023.
Inspire Record 2660186 DOI 10.17182/hepdata.140672

The GlueX experiment at Jefferson Lab studies photoproduction of mesons using linearly polarized $8.5\,\text{GeV}$ photons impinging on a hydrogen target which is contained within a detector with near-complete coverage for charged and neutral particles. We present measurements of spin-density matrix elements for the photoproduction of the vector meson $\rho$(770). The statistical precision achieved exceeds that of previous experiments for polarized photoproduction in this energy range by orders of magnitude. We confirm a high degree of $s$-channel helicity conservation at small squared four-momentum transfer $t$ and are able to extract the $t$-dependence of natural and unnatural-parity exchange contributions to the production process in detail. We confirm the dominance of natural-parity exchange over the full $t$ range. We also find that helicity amplitudes in which the helicity of the incident photon and the photoproduced $\rho(770)$ differ by two units are negligible for $-t<0.5\,\text{GeV}^{2}/c^{2}$.

2 data tables

Spin-density matrix elements for the photoproduction of $\rho(770)$ in the helicity system. The first uncertainty is statistical, the second systematic. The systematic uncertainties for the polarized SDMEs $\rho^1_{ij}$ and $\rho^2_{ij}$ contain an overall relative normalization uncertainty of 2.1% which is fully correlated for all values of $-t$.

Spin-density matrix elements for the photoproduction of $\rho(770)$ in the helicity system. The first uncertainty is statistical, the second systematic. The systematic uncertainties for the polarized SDMEs $\rho^1_{ij}$ and $\rho^2_{ij}$ contain an overall relative normalization uncertainty of 2.1% which is fully correlated for all values of $-t$.


Version 2
Reaction plane correlated triangular flow in Au+Au collisions at $\mathbf{\sqrt{s_{\textrm{NN}}}=3}$ GeV

The STAR Collaboration 19 & STAR collaborations Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 109 (2024) 044914, 2024.
Inspire Record 2702151 DOI 10.17182/hepdata.144480

We measure triangular flow relative to the reaction plane at 3 GeV center-of-mass energy in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. A significant $v_3$ signal for protons is observed, which increases for higher rapidity, higher transverse momentum, and more peripheral collisions. The triangular flow is essentially rapidity-odd with a slope at mid-rapidity, $dv_3/dy|_{(y=0)}$, opposite in sign compared to the slope for directed flow. No significant $v_3$ signal is observed for charged pions and kaons. Comparisons with models suggest that a mean field potential is required to describe these results, and that the triangular shape of the participant nucleons is the result of stopping and nuclear geometry.

12 data tables

Event plane resolutions for calculating $v_3\{\Psi_1\}$ as a function of centrality from $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

Event plane resolutions for calculating $v_3\{\Psi_1\}$ as a function of centrality from $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

$v_3\{\Psi_1\}$ vs. centrality for $\pi^+$, $\pi^-$, and protons using the event plane method in $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

More…