The spin-exotic hybrid meson $\pi_{1}(1600)$ is predicted to have a large decay rate to the $\omega\pi\pi$ final state. Using 76.6~pb$^{-1}$ of data collected with the GlueX detector, we measure the cross sections for the reactions $\gamma p \to \omega \pi^+ \pi^- p$, $\gamma p \to \omega \pi^0 \pi^0 p$, and $\gamma p\to\omega\pi^-\pi^0\Delta^{++}$ in the range $E_\gamma =$ 8-10 GeV. Using isospin conservation, we set the first upper limits on the photoproduction cross sections of the $\pi^{0}_{1}(1600)$ and $\pi^{-}_{1}(1600)$. We combine these limits with lattice calculations of decay widths and find that photoproduction of $\eta'\pi$ is the most sensitive two-body system to search for the $\pi_1(1600)$.
Measured $\sigma(\gamma p\to\omega\pi^+\pi^-p)$ values for $8<E_\gamma<10$ GeV and $0.1<-t<0.5$ (GeV$^2$). There are normalization uncertainties that are 100% correlated between the three cross section measurements. These include 5% for the luminosity, 13.5% for the tracking efficiency, and 8.1% for the photon efficiency.
Measured $\sigma(\gamma p\to\omega\pi^0\pi^0p)$ values for $8<E_\gamma<10$ GeV and $0.1<-t<0.5$ (GeV$^2$). There are normalization uncertainties that are 100% correlated between the three cross section measurements. These include 5% for the luminosity, 9.1% for the tracking efficiency, and 24.3% for the photon efficiency.
Measured $\sigma(\gamma p\to\omega\pi^-\pi^0\Delta^{++})$ values for $8<E_\gamma<10$ GeV and $0.1<-t<0.5$ (GeV$^2$). There are normalization uncertainties that are 100% correlated between the three cross section measurements. These include 5% for the luminosity, 16% for the tracking efficiency, and 16.3% for the photon efficiency.
We measure the spin-density matrix elements (SDMEs) of the $\Delta^{++}(1232)$ in the photoproduction reaction $\gamma p \to \pi^-\Delta^{++}(1232)$ with the GlueX experiment in Hall D at Jefferson Lab. The measurement uses a linearly--polarized photon beam with energies from $8.2$ to $8.8$~GeV and the statistical precision of the SDMEs exceeds the previous measurement by three orders of magnitude for the momentum transfer squared region below $1.4$ GeV$^2$. The data are sensitive to the previously undetermined relative sign between couplings in existing Regge-exchange models. Linear combinations of the extracted SDMEs allow for a decomposition into natural and unnatural--exchange amplitudes. We find that the unnatural exchange plays an important role in the low momentum transfer region.
Spin-density matrix elements for the photoproduction of $\Delta(1232)^{++}$ in the Gottfried-Jackson system. The first uncertainty is statistical, the second systematic.
This Letter presents results from a combination of searches for Higgs boson pair production using 126$-$140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.4 assuming no Higgs boson pair production. Constraints on the Higgs boson self-coupling modifier $\kappa_{\lambda}=\lambda_{HHH}/\lambda_{HHH}^\mathrm{SM}$, and the quartic $HHVV$ coupling modifier $\kappa_{2V}=g_{HHVV}/g_{HHVV}^\mathrm{SM}$, are derived individually, fixing the other parameter to its SM value. The observed 95% CL intervals are $-1.2 < \kappa_{\lambda} < 7.2$ and $0.6 < \kappa_{2V} < 1.5$, respectively, while the expected intervals are $-1.6 < \kappa_{\lambda} < 7.2$ and $0.4 < \kappa_{2V} < 1.6$ in the SM case. Constraints obtained for several interaction parameters within Higgs effective field theory are the strongest to date, offering insights into potential deviations from SM predictions.
Observed and expected 95% CL upper limits on the signal strength for inclusive ggF HH and VBF HH production from the bb̄τ<sup>+</sup>τ<sup>-</sup>, bb̄γγ, bb̄bb̄, multilepton and bb̄ℓℓ+E<sub>T</sub><sup>miss</sup> decay channels, and their statistical combination. The predicted SM cross-section assumes m<sub>H</sub> = 125 GeV. The expected limit, along with its associated ±1σ and ±2σ bands, is calculated for the assumption of no HH production and with all NPs profiled to the observed data.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}b\bar{b}$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\tau\tau$.
The azimuthal correlation angle, $\Delta\phi$, between the scattered lepton and the leading jet in deep inelastic $e^{\pm}p$ scattering at HERA has been studied using data collected with the ZEUS detector at a centre-of-mass energy of $\sqrt{s} = 318 \;\mathrm{GeV}$, corresponding to an integrated luminosity of $326 \;\mathrm{pb}^{-1}$. A measurement of jet cross sections in the laboratory frame was made in a fiducial region corresponding to photon virtuality $10 \;\mathrm{GeV}^2 < Q^2 < 350 \;\mathrm{GeV}^2$, inelasticity $0.04 < y < 0.7$, outgoing lepton energy $E_e > 10 \;\mathrm{GeV}$, lepton polar angle $140^\circ < \theta_e < 180^\circ$, jet transverse momentum $2.5 \;\mathrm{GeV} < p_\mathrm{T,jet} < 30 \;\mathrm{GeV}$, and jet pseudorapidity $-1.5 < \eta_\mathrm{jet} < 1.8$. Jets were reconstructed using the $k_\mathrm{T}$ algorithm with the radius parameter $R = 1$. The leading jet in an event is defined as the jet that carries the highest $p_\mathrm{T,jet}$. Differential cross sections, $d\sigma/d\Delta\phi$, were measured as a function of the azimuthal correlation angle in various ranges of leading-jet transverse momentum, photon virtuality and jet multiplicity. Perturbative calculations at $\mathcal{O}(\alpha_{s}^2)$ accuracy successfully describe the data within the fiducial region, although a lower level of agreement is observed near $\Delta\phi \rightarrow \pi$ for events with high jet multiplicity, due to limitations of the perturbative approach in describing soft phenomena in QCD. The data are equally well described by Monte Carlo predictions that supplement leading-order matrix elements with parton showering.
<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Inclusive measurement of the differential cross sections, $d\sigma/d\Delta\phi$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. The effect of initial- and final-state radiation has been corrected in data, based on a simulation study performed in the RAPGAP framework. The quantities $\delta_\mathrm{stat}$ and $\delta_\mathrm{syst}$ represent the statistical and systematic uncertainties relative to the central value, respectively. The uncertainty in the luminosity measurement ($1.9\%$) is not included in these values. The quantities $\delta(\mathcal{O}(\alpha_{s}^{k}))$ represent the combined uncertainty of the scale dependence in the calculation and the model dependence in the hadronisation correction in the $\mathcal{O}(\alpha_{s}^{k})$ calculations.
<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Differential cross sections, $d\sigma/d\Delta\phi$, in the $p_{T,jet}^{lead}$ region of $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ for $N_{jet} \geq 1$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. Other details are as in the caption to Table 1.
<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Differential cross sections, $d\sigma/d\Delta\phi$, in the $p_{T,jet}^{lead}$ region of $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ for $N_{jet} \geq 2$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. Other details are as in the caption to Table 1.
Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in 140 fb$^{-1}$ of proton--proton collisions with $\sqrt{s}=13$ TeV center-of-mass energy, recorded with the ATLAS detector at CERN's Large Hadron Collider. Observables that are sensitive the energy-scale and angular distribution of radiation due to the strong interaction in the final state are measured double-differentially, in bins of jet multiplicity, and are unfolded to account for acceptance and detector-related effects. Additionally, the scalar sum of the two leading jets' transverse momenta is measured triple-differentially, in bins of the third jet's transverse momentum as well as bins of jet multiplicity. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling $\alpha_{\textrm S}$ while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work, and are documented herein.
R32 for $H_{T2}$, 60 GeV < $p_{T,3}$
R32 for $H_{T2}$, 0.05 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
A search is presented for flavour-changing neutral-current interactions involving the top quark, the Higgs boson and an up-type quark ($q=u,c$) with the ATLAS detector at the Large Hadron Collider. The analysis considers leptonic decays of the top quark along with Higgs boson decays into two $W$ bosons, two $Z$ bosons or a $\tau^{+}\tau^{-}$ pair. It focuses on final states containing either two leptons (electrons or muons) of the same charge or three leptons. The considered processes are $t\bar{t}$ and $Ht$ production. For the $t\bar{t}$ production, one top quark decays via $t\to Hq$. The proton-proton collision data set analysed amounts to 140 fb$^{-1}$ at $\sqrt{s}=13$ TeV. No significant excess beyond Standard Model expectations is observed and upper limits are set on the $t\to Hq$ branching ratios at 95% confidence level, amounting to observed (expected) limits of $\mathcal{B}(t\to Hu)<2.8\,(3.0) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.3\,(3.8) \times 10^{-4}$. Combining this search with other searches for $tHq$ flavour-changing neutral-current interactions previously conducted by ATLAS, considering $H\to b\bar{b}$ and $H\to\gamma\gamma$ decays, as well as $H\to\tau^{+}\tau^{-}$ decays with one or two hadronically decaying $\tau$-leptons, yields observed (expected) upper limits on the branching ratios of $\mathcal{B}(t\to Hu)<2.6\,(1.8) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.4\,(2.3) \times 10^{-4}$.
Pre-fit background composition of the SR$2\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$2\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$3\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.
Figure 6(left) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 6(right) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 2 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 7 of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ c-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Measurements of inclusive, differential cross-sections for the production of events with missing transverse momentum in association with jets in proton-proton collisions at $\sqrt{s}=13~$TeV are presented. The measurements are made with the ATLAS detector using an integrated luminosity of $140~$fb$^{-1}$ and include measurements of dijet distributions in a region in which vector-boson fusion processes are enhanced. They are unfolded to correct for detector resolution and efficiency within the fiducial acceptance, and are designed to allow robust comparisons with a wide range of theoretical predictions. A measurement of differential cross sections for the $Z~\to \nu\nu$ process is made. The measurements are generally well-described by Standard Model predictions except for the dijet invariant mass distribution. Auxiliary measurements of the hadronic system recoiling against isolated leptons, and photons, are also made in the same phase space. Ratios between the measured distributions are then derived, to take advantage of cancellations in modelling effects and some of the major systematic uncertainties. These measurements are sensitive to new phenomena, and provide a mechanism to easily set constraints on phenomenological models. To illustrate the robustness of the approach, these ratios are compared with two common Dark Matter models, where the constraints derived from the measurement are comparable to those set by dedicated detector-level searches.
The measured $p_\text{T}^\text{miss}$ differential cross-sections in the $p_\text{T}^\text{miss}+\text{jets}$ region of the incluse jet phase space, compared with the SM predictions. The middle panels show the ratios of the predictions to the data, along with their uncertainties, while the lower panels show the relative contributions from different SM processes relative to the total MEPS@NLO prediction. Note that individually numbered PDF components ('dK_PDF_') in the uncertainty breakdown correspond to NNPDF Hessian eigenvectors. Uncertainty components labeled 'VV_dK' include Vjj processes.
The measured $p_\text{T}^\text{recoil}$ differential cross-sections in the $1\mu+\text{jets}$ region of the incluse jet phase space, compared with the SM predictions. The middle panels show the ratios of the predictions to the data, along with their uncertainties, while the lower panels show the relative contributions from different SM processes relative to the total MEPS@NLO prediction. Note that individually numbered PDF components ('dK_PDF_') in the uncertainty breakdown correspond to NNPDF Hessian eigenvectors. Uncertainty components labeled 'VV_dK' include Vjj processes.
The measured $p_\text{T}^\text{recoil}$ differential cross-sections in the $1e+\text{jets}$ region of the incluse jet phase space, compared with the SM predictions. The middle panels show the ratios of the predictions to the data, along with their uncertainties, while the lower panels show the relative contributions from different SM processes relative to the total MEPS@NLO prediction. Note that individually numbered PDF components ('dK_PDF_') in the uncertainty breakdown correspond to NNPDF Hessian eigenvectors. Uncertainty components labeled 'VV_dK' include Vjj processes.
The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{3}/\Lambda^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $\sigma(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.
The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.
The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.
The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)
The ratio of branching ratios of the $W$ boson to muons and electrons, $R^{\mu/e}_W=B(W\rightarrow \mu\nu)/B(W\rightarrow e\nu)$, has been measured using 140 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector at the LHC, probing the universality of lepton couplings. The ratio is obtained from measurements of the $t\bar{t}$ production cross-section in the $ee$, $e\mu$ and $\mu\mu$ dilepton final states. To reduce systematic uncertainties, it is normalised by the square root of the corresponding ratio $R^{\mu\mu/ee}_Z$ for the $Z$ boson measured in inclusive $Z\rightarrow ee$ and $Z\rightarrow\mu\mu$ events. By using the precise value of $R^{\mu\mu/ee}_Z$ determined from $e^+e^-$ colliders, the ratio $R^{\mu/e}_W$ is determined to be $R^{\mu/e}_W = 0.9995 \pm 0.0022 \pm 0.0036 \pm 0.0014$. The three uncertainties correspond to data statistics, experimental systematics and the external measurement of $R^{\mu\mu/ee}_Z$, giving a total uncertainty of 0.0045, and confirming the Standard Model assumption of lepton flavour universality in $W$-boson decays at the 0.5% level.
The measurement of the ratio of the rate of decay of W bosons to muons and electrons, $R(\mu/e)=B(W\rightarrow\mu\nu)/B(W\rightarrow e\nu)$.