A polarized internal atomic hydrogen target and a stored, polarized beam are used to measure the spin-dependent total cross section Delta_sigma_T/sigma_tot, as well as the polar integrals of the spin correlation coefficient combination A_xx-A_yy, and the analyzing power A_y for pp-> pp pi0 at four bombarding energies between 325 and 400 MeV. This experiment is made possible by the use of a cooled beam in a storage ring. The polarization observables are used to study the contribution from individual partial waves.
SIG(C=DEL_T) defined as the cross section with the spins of the colliding protons antiparallel, minus the cross section with spins parallel, using transversely polarized beam and target.
The experimental setup and detection technique of the COSY-11 installation, an internal experimental facility at the cooler synchrotron and storage ring COSY Jülich, are described. The detection system has been designed for meson production studies with full geometrical acceptance close to threshold. Preliminary results of first measurements are presented, emphasis is put on strangeness production in the reactions pp → ppK + K − and pp → pK + Λ .
Excess energy of 6.1 MeV above threshold 3.3016 GeV.
Excess energy of 2 MeV above threshold 2.339 GeV.
The production of eta mesons has been measured in the proton-proton interaction close to the reaction threshold using the COSY-11 internal facility at the cooler synchrotron COSY. Total cross sections were determined for eight different excess energies in the range from 0.5 MeV to 5.4 MeV. The energy dependence of the total cross section is well described by the available phase-space volume weighted by FSI factors for the proton-proton and proton-eta pairs.
The total cross sections as a function of beam momentum and excess energy with statistical errors. The uncertainty on the beam momentum and excess energy are +- 0.00080 GeV and +- 0.28 MeV respectively.
We report a measurement of the spin-dependent total cross section ratios delta_sigma_T/sigma_tot and delta_sigma_L/sigma_tot of the pp --> pp pi^0 reaction between 325 MeV and 400 MeV. The experiment was carried out with a polarized internal target in a storage ring. Non-vertical beam polarization was obtained by the use of solenoidal spin rotators. Near threshold, the knowledge of both spin-dependent total cross sections is sufficient to deduce the strength of certain participating partial waves, free of any model.
SIG(C=T1-1) and SIG(C=T11) means opposite and parallel transverse beam and target polarizations. The same is for longitudunal (L) polarizations. SIG(C=TOT)is unpolarized total cross section.
SIG(C=L1-1) and SIG(L=11) means opposite and parallel longitudinal beam andtarget polarizations. SIG(C=TOT) is unpolarized total cross section.
Hyperon production in the threshold region was studied in the reaction pp→K+Λp using the time-of-flight spectrometer COSY-TOF. Exclusive data, covering the full phase-space, were taken at three different beam momenta pbeam=2.59 , 2.68 and 2.85 GeV/ c (corresponding to excess energies of ɛ=85 , 115 and 171 MeV). Total cross-sections were deduced to be 7.4±0.5 μb , 8.6±0.6 μb and 16.5±0.4 μb , respectively. Differential observables including Dalitz plots were obtained. From the investigation of the Dalitz plot at pbeam=2.85 GeV/c a dominant contribution of the N∗(1650) -resonance to the reaction mechanism was found. In addition the pΛ -final-state interaction turned out to have a significant influence on the Dalitz plot distribution even 171 MeV above threshold.
Measured total cross sections.
Distribution of the invariant mass of the P-LAMBDA subsystem at beam momentum 2.85 GeV.
Distribution of the invariant mass of the K-LAMBDA subsystem at beam momentum 2.85 GeV.
Total cross sections for the pp --> pp eta' reaction have been measured in the excess energy range from Q = 1.53 MeV to Q = 23.64 MeV. The experiment has been performed at the internal installation COSY-11 using a stochastically cooled proton beam of the COoler SYnchrotron COSY and a hydrogen cluster target. The determined energy dependence of the total cross section weakens the hypothesis of the S-wave repulsive interaction between the eta' meson and the proton. New data agree well with predictions based on the phase-space distribution modified by the proton-proton final-state-interaction (FSI) only.
Total cross sections w.r.t the excess energy in the CM system. Statistical errors only are given. As well as the 15 PCT overall systematic uncertainty there is an uncertainty on the energy of 0.44 MeV.
Threshold measurements of the associated strangeness production reactions pp --> p K(+) Lambda and pp --> p K(+) Sigma(0) are presented. Although slight differences in the shapes of the excitation functions are observed, the most remarkable feature of the data is that at the same excess energy the total cross section for the Sigma(0) production appears to be about a factor of 28 smaller than the one for the Lambda particle. It is concluded that strong Sigma(0)-p final state interactions, and in particular the Sigma-N --> Lambda-p conversion reaction, are the likely cause of the depletion for the yield in the Sigma signal. This hypothesis is in line with other experimental evidence in the literature.
The given errors are statistical only. The cross section presented as a function of the nominal excess energy.
In a study of photoproduction at photon energies up to 5.3 GeV in a deuterium bubble chamber the reactions γ n→p π + π − π − and γ n→p π + π − π − π 0 were analyzed. In these reactions production of the resonances Δ ++ , Δ 0 , ϱ 0 , ω and A 2 − was observed. Photoproduction of strange particles was investigated and cross sections for the reactions γ n→ Λ K + π − , Σ − K 0 π + , pK − K 0 , Λ K 0 π + π − and Λ K + π − π 0 are presented. Production of Σ − (1385) and K ∗0 (890) was observed.
No description provided.
No description provided.
No description provided.
The dissociation of a K− into the K−ϕ system is studied at 8.25 GeV/c. The cross-section for K−ϕp production is (27±2) μb. All the expected properties of diffraction are found (mass spectrum, mass-slope correlation, 1+S wave dominance). There is also an indication of the Kϕ decay mode of a 2− resonance in theL region.
No description provided.
π−p elastic scattering is studied at an incident π− beam momentum of 3.92 GeV/c. From the analysis of about 38 000 elastic events we give the differential cross-section for −t>0.06 (GeV)2. The known structures at −t ≈ 0.8 and 2.8 (GeV)2 are seen. An additional possible structure is present in the backward hemisphere.
No description provided.
No description provided.