Photoproduction of rho0 mesons and Delta-baryons in the reaction gamma p ---> p pi+ pi- at energies up to s**(1/2) = 2.6-GeV

Wu, C. ; Barth, J. ; Braun, W. ; et al.
Eur.Phys.J.A 23 (2005) 317-344, 2005.
Inspire Record 678798 DOI 10.17182/hepdata.43532

The photoproduction of ρ0-mesons and Δ-baryons at photon energies up to 2.6 GeV has been studied with the SAPHIR detector at the electron stretcher ELSA. Total and differential cross-sections were obt

29 data tables

Total cross sections for (PI+ PI-) photoproduction from one run with 1.6 GeV electron beam.. Statistical errors only.

Total cross section for (PI+ PI-) photoproduction from 4 runs. (3 with 2.8 GeV electron beam and 1 with 2.6 GeV).

Differential cross section DSIG/DT for (PI+ PI-) photoproduction .

More…

Rho Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 113 (1976) 53-92, 1976.
Inspire Record 108749 DOI 10.17182/hepdata.35708

The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.

10 data tables

DIPION CHANNEL CROSS SECTION.

THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).

No description provided.

More…