Strange baryon and in particular multi-strange baryon production is suggested to be a useful probe in the search for quark gluon plasma formation in heavy ion collisions. We have measured the (Ω − + Ω + ) (Ξ − + Ξ + ) production ratio to be 0.8±0.4 at central rapidity and ϱ T > 1.6 GeV/c.
Multi-strange baryon and anti-baryon production is expected to be a useful probe in the search for Quark-Gluon Plasma formation. We present the transverse mass distributions of negative particles, K o s, Λs, Λ s, and Ξ − s produced in sulphurtungsten interactions at 200 GeV/c per nucleon and give the corrected ratios Λ Λ, Ξ − Λ and Ξ − /Λ . We note that our ratio Ξ − / Λ appears large in comparison to that from p p interactions.
We report on a high precision measurement of ϕ-meson production in continuum events and in direct decays of the Υ(1S)- and Υ(2S)-mesons. The ratio of the total production rate of ϕ-mesons in direct Υ(1S)- and Υ(2S)-decays over that in continuum events is 1.32±0.08±0.09 and 1.07±0.13±0.11 respectively. This is compatible with the corresponding ratio obtained for lighter mesons, but is appreciably smaller than the relative baryon production rate.
Strange and multistrange baryon production is expected to be enhanced in heavy ion interactions if a phase transition from hadronic matter to a Quark-Gluon Plasma takes place. The production yields of Λ s, Λ s, Ξ − s, and Ξ + s relative to the production of negative particles are presented for sulphur-tungsten interactions at 200 GeV/ c per nucleon. These production yields are compared to those produced in proton-tungsten interactions and the enhancements of strange and multistrange baryons and antibaryons are presented.
We report on measurements of the inclusive production rate of Sigma+ and Sigma0 baryons in hadronic Z decays collected with the L3 detector at LEP. The Sigma+ baryons are detected through the decay Sigma+ -> p pi0, while the Sigma0 baryons are detected via the decay mode Sigma0 -> Lambda gamma. The average numbers of Sigma+ and Sigma0 per hadronic Z decay are measured to be: < N_Sigma+ > + < N_Sigma+~ > = 0.114 +/- 0.011 (stat) +/- 0.009 (syst), < N_Sigma0 > + < N_Sigma0~ > = 0.095 +/- 0.015 (stat) +/- 0.013 (syst). These rates are found to be higher than the predictions from Monte Carlo hadronization models and analytical parameterizations of strange baryon production.
A sample of 2.2 million hadronic Z decays, selected from the data recorded by the Delphi detector at LEP during 1994-1995 was used for an improved measurement of inclusive distributions of pi+, K+ and p and their antiparticles in gluon and quark jets. The production spectra of the individual identified particles were found to be softer in gluon jets compared to quark jets, with a higher multiplicity in gluon jets as observed for inclusive charged particles. A significant proton enhancement in gluon jets is observed indicating that baryon production proceeds directly from colour objects. The maxima, xi^*, of the xi-distributions for kaons in gluon and quark jets are observed to be different.
Measurements are presented of $K~0$ meson and $\Lambda$ baryon production in deep-inelastic positron-proton scattering (DIS) in the kinematic range $10 < Q~2 < 70\,$GeV$~2$ and $10~{-4} < x < 10~{-2}$. The measurements, obtained using the H1 detector at the HERA collider, are discussed in the light of possible mechanisms for increased strangeness production at low Bjorken-$x$. Comparisons of the $x_F$ spectra, where $x_F$ is the fractional longitudinal momentum in the hadronic centre-of-mass frame, with results from electron-positron annihilation are made. The $x_F$ spectra and the $K~0$ ``seagull'' plot are compared with previous DIS results. The mean $K~0$ and $\Lambda$ multiplicities are studied as a function of the centre-of-mass energy $W$ and are observed to be consistent with a logarithmic increase with $W$ when compared with previous measurements. A comparison of the levels of strangeness production in diffractive and non-diffractive DIS is made. An upper limit of $0.9\,$nb, at the $95\%$ confidence level, is placed on the cross-section for QCD instanton induced events.
Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.