H1 and ZEUS have published single-differential cross sections for inclusive D^{*\pm}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2 > 5 GeV2, electron inelasticity 0.02 < y < 0.7 and the D^{*\pm} meson's transverse momentum pT (D^*) > 1.5 GeV and pseudorapidity |eta(D^*)| < 1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d2s /dQ2dy are combined with earlier D^{*\pm} data, extending the kinematic range down to Q2 > 1.5 GeV2. Perturbative next-to-leadingorder QCD predictions are compared to the results.
The combined differential $D^{*\pm}$-production cross section as a function of $p_T(D^{*})$, with its uncorrelated and correlated uncertainties.
The combined differential $D^{*\pm}$-production cross section as a function of $\eta(D^{*})$, with its uncorrelated and correlated uncertainties.
The combined differential $D^{*\pm}$-production cross section as a function of $z(D^{*})$, with its uncorrelated and correlated uncertainties.
The cross section of the diffractive process e^+p -> e^+Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q^2 <2 GeV^2 and in deep-inelastic scattering with 4 GeV^2<Q^2<80 GeV^2. The results are compared to next-to-leading order QCD calculations based on diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering.
Integrated $e^{+}p$ diffractive dijet cross sections in $\gamma p$. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation is also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.
Integrated $e^{+}p$ diffractive dijet cross sections in DIS. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation and the radiative correction ($1+\delta_{\text{rad}}$) are also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.
Ratio of integrated $e^{+}p$ diffractive dijet cross sections for $Q^2<2\,\text{GeV}^2$ (photoproduction) to $Q^2>4\,\text{GeV}^2$ (DIS).
A measurement is presented of single- and double-differential dijet cross sections in diffractive deep-inelastic $ep$ scattering at HERA using data collected by the H1 experiment corresponding to an integrated luminosity of 290 pb^{-1}. The investigated phase space is spanned by the photon virtuality in the range of 4<Q^{2}<100 GeV^{2} and by the fractional proton longitudinal momentum loss x_pom<0.03. The resulting cross sections are compared with next-to-leading order QCD predictions based on diffractive parton distribution functions and the value of the strong coupling constant is extracted.
Integrated cross section in the measurement phase space.
Diffractive DIS dijet cross section measured differentially as a function of $Q^2$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two columns show the correction factors for hadronisation and QED radiation, respectively.
Diffractive DIS dijet cross section measured differentially as a function of $y$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two column show the correction factors for hadronisation and QED radiation, respectively.
A measurement of inclusive ZZ production cross section and constraints on anomalous triple gauge couplings in proton-proton collisions at sqrt(s) = 8 TeV are presented. A data sample, corresponding to an integrated luminosity of 19.6 inverse femtobarns was collected with the CMS experiment at the LHC. The measurements are performed in the leptonic decay modes ZZ to lll'l', where l = e, mu and l' = e, mu, tau. The measured total cross section, sigma(pp to ZZ) = 7.7 +/- 0.5 (stat.) +0.5-0.4 (syst.) +/- 0.4 (theo.) +/- 0.2 (lum.) pb for both Z bosons produced in the mass range 60 < m[Z] < 120 GeV, is consistent with standard model predictions. Differential cross sections are measured and well described by the theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ gamma couplings at the 95% confidence level: -0.004 < f[4,Z] < 0.004, -0.004 < f[5,Z] < 0.004, -0.005 < f[4,gamma] < 0.005, and -0.005 < f[5,gamma] < 0.005.
The total ZZ production cross section (P P --> Z0 Z0 X, 60GeV < mll < 120GeV) as measured in each decay channel and for the combination of all channels. The first systematic uncertainty is detector systematics, second is theoretical systematics and the third is luminosity systematic uncertainty.
Differential cross sections normalized to the fiducial cross section for the combined 4e, 4mu and 2e2mu decay channels as a function of pT for the highest pT lepton in the event.
Differential cross sections normalized to the fiducial cross section for the combined 4e, 4mu and 2e2mu decay channels as a function of pT for the Z1, where Z1 is defined as highest pT Z candidate.
Measurements of inclusive differential cross sections for charged pion and kaon production in electron-positron annihilation have been carried out at a center-of-mass energy of Q = 10.52 GeV. The measurements were performed with the Belle detector at the KEKB electron-positron collider using a data sample containing 113 million e+e- -> qqbar events, where q={u,d,s,c}. We present charge-integrated differential cross sections d\sigma_h+-/dz for h+- = pi+-, K+- as a function of the relative hadron energy z = 2*E_h / sqrt{s} from 0.2 to 0.98. The combined statistical and systematic uncertainties for pi+- (K+-) are 4% (4%) at z ~ 0.6 and 15% (24%) at z ~ 0.9. The cross sections are the first measurements of the z-dependence of pion and kaon production for z > 0.7 as well as the first precision cross section measurements at a center-of-mass energy far below the Z^0 resonance used by the experiments at LEP and SLC.
Measured charged-integrated differential cross sections for charged pion and kaon production as a function of the fractional hadron energy Z (=2*Eh/sqrt(s)).
The cross sections for inelastic photoproduction of J/psi and psi^prime mesons have been measured in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 468 pb-1 collected in the period 1996--2007. The psi^prime to J/psi cross section ratio was measured in the range 0.55 < z < 0.9 and 60 < W < 190 GeV as a function of W, z and p_T. Here W denotes the photon-proton centre-of-mass energy, z is the fraction of the incident photon energy carried by the meson and p_T is the transverse momentum of the meson with respect to the beam axis. The J/psi cross sections were measured for 0.1 < z < 0.9, 60 < W < 240 GeV and p_T > 1 GeV. Theoretical predictions within the non-relativistic QCD framework including NLO colour--singlet and colour--octet contributions were compared to the data, as were predictions based on the k_T--factorisation approach.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of PT.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of W.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of Z.
Measurements are presented of single and double-differential dijet cross sections in diffractive photoproduction based on a data sample with an integrated luminosity of 47 pb^-1. The events are of the type ep -> eXY, where the hadronic system X contains at least two jets and is separated by a large rapidity gap from the system Y, which consists of a leading proton or low-mass proton excitation. The dijet cross sections are compared with QCD calculations at next-to-leading order and with a Monte Carlo model based on leading order matrix elements with parton showers. The measured cross sections are smaller than those obtained from the next-to-leading order calculations by a factor of about 0.6. This suppression factor has no significant dependence on the fraction x_gamma of the photon four-momentum entering the hard subprocess. Ratios of the diffractive to the inclusive dijet cross sections are measured for the first time and are compared with Monte Carlo models.
Total diffractive dijet positron-proton cross section integrated over the full measured kinematic range.
Bin averaged hadron level differential cross section for diffractive dijet production as a function of X(C=GAMMA). The first systematic error is the uncorrelated and the second the correlated uncertainty.
Bin averaged hadron level differential cross section for diffractive dijet production as a function of the ET of jet 1. The first systematic error is the uncorrelated and the second the correlated uncertainty.
A measurement is presented of inelastic photo- and electroproduction of J/psi mesons in ep scattering at HERA. The data were recorded with the H1 detector in the period from 2004 to 2007. Single and double differential cross sections are determined and the helicity distributions of the J/psi mesons are analysed. The results are compared to theoretical predictions in the colour singlet model and in the framework of non-relativistic QCD. Calculations in the colour singlet model using a k_T factorisation ansatz are able to give a good description of the data, while colour singlet model calculations to next-to-leading order in collinear factorisation underestimate the data.
Measured differential photoproduction cross section as a function of the squared transverse momentum of the J/PSI.
Measured differential photoproduction cross section as a function of the elasticity of the J/PSI.
Measured photoproduction cross section as a function of the photon-proton centre of mass energy W.
The inclusive production of D*(2010) mesons in deep-inelastic ep scattering is measured in the kinematic region of photon virtuality 100 < Q^2 < 1000 GeV^2 and inelasticity 0.02 < y < 0.7. Single and double differential cross sections for inclusive D* meson production are measured in the visible range defined by |eta(D*)| < 1.5 and p_T(D*) > 1.5 GeV. The data were collected by the H1 experiment during the period from 2004 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. The charm contribution, F_2^{ccbar}, to the proton structure function F_2 is determined. The measurements are compared with QCD predictions.
Total inclusive cross section for D*+- production.
Single differential cross section DSIG/DPT for D*+- production. The DSYS errors are the uncorrelated and correlated systematicuncertainties respectively.
Single differential cross section DSIG/DETARAP for D*+- production. The DSYS errors are the uncorrelated and correlated systematicuncertainties respectively.
The process of charm quark fragmentation is studied using $D^{*\pm}$ meson production in deep-inelastic scattering as measured by the H1 detector at HERA. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the $D^{*\pm}$ meson in the event. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to $D^{*\pm}$ mesons.
Normalised D*+- cross section as a function of zJet for the D*+- jet sample.
Normalised D*+- cross section as a function of zHem for the D*+- jet sample.
Normalised D*+- cross section, corrected to the parton level, as a function of zJet for the D*+- jet sample.