Measurement of dijet cross-sections in photoproduction at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 25 (2002) 13-23, 2002.
Inspire Record 581409 DOI 10.17182/hepdata.46764

Dijet cross sections as functions of several jet observables are measured in photoproduction using the H1 detector at HERA. The data sample comprises e^+p data with an integrated luminosity of 34.9 pb^(-1). Jets are selected using the inclusive k_T algorithm with a minimum transverse energy of 25 GeV for the leading jet. The phase space covers longitudinal proton momentum fraction x_p and photon longitudinal momentum fraction x_gamma in the ranges 0.05<x_p<0.6 and 0.1<x_gamma<1. The predictions of next-to-leading order perturbative QCD, including recent photon and proton parton densities, are found to be compatible with the data in a wide kinematical range.

10 data tables match query

Differential ep cross section for dijet production as a function of the invariant mass of the two jets.

Differential ep cross section for dijet production as a function of the average transverse energy the two jets.

Differential ep cross section for dijet production as a function of the maximum transverse energy the leading jet.

More…

Study of Charm Fragmentation into $D^{*\pm}$ Mesons in Deep-Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 59 (2009) 589-606, 2009.
Inspire Record 792603 DOI 10.17182/hepdata.45316

The process of charm quark fragmentation is studied using $D^{*\pm}$ meson production in deep-inelastic scattering as measured by the H1 detector at HERA. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the $D^{*\pm}$ meson in the event. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to $D^{*\pm}$ mesons.

20 data tables match query

Normalised D*+- cross section as a function of zJet for the D*+- jet sample.

Normalised D*+- cross section as a function of zHem for the D*+- jet sample.

Normalised D*+- cross section, corrected to the parton level, as a function of zJet for the D*+- jet sample.

More…

Further studies of the photoproduction of isolated photons with a jet at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 08 (2014) 023, 2014.
Inspire Record 1298390 DOI 10.17182/hepdata.64205

In this extended analysis using the ZEUS detector at HERA, the photoproduction of isolated photons together with a jet is measured for different ranges of the fractional photon energy, $x_\gamma^{\mathrm{meas}}$, contributing to the photon-jet final state. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges $6 < E_T^{\gamma} < 15$ GeV and $-0.7 < \eta^{\gamma} < 0.9$, and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{\rm jet} < 35$ GeV and $-1.5 < \eta^{\rm jet} < 1.8$, for an integrated luminosity of 374 $\mathrm{pb}^{-1}$. The kinematic observables studied comprise the transverse energy and pseudorapidity of the photon and the jet, the azimuthal difference between them, the fraction of proton energy taking part in the interaction, and the difference between the pseudorapidities of the photon and the jet. Higher-order theoretical calculations are compared to the results.

7 data tables match query

Differential cross-section D(SIG)/DET(GAMMA) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.

Differential cross-section D(SIG)/DETARAP(GAMMA) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.

Differential cross-section D(SIG)/DET(JET) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.

More…

Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering

Wang, D. ; Pan, K. ; Subedi, R. ; et al.
Phys.Rev.C 91 (2015) 045506, 2015.
Inspire Record 1327482 DOI 10.17182/hepdata.72848

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

5 data tables match query

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.

More…

Measurement of internal jet structure in dijet production in deep inelastic scattering at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 545 (1999) 3-20, 1999.
Inspire Record 482053 DOI 10.17182/hepdata.32577

Internal jet structure in dijet production in deep-inelastic scattering is measured with the H1 detector at HERA. Jets with transverse energies ET,Breit > 5 GeV are selected in the Breit frame employing k_perp and cone jet algorithms. In the kinematic region of squared momentum transfers 10 < Q2 <~ 120 GeV2 and x-Bjorken values 2.10^-4 <~ xBj <~ 8.10^-3, jet shapes and subjet multiplicities are measured as a function of a resolution parameter. Distributions of both observables are corrected for detector effects and presented as functions of the transverse jet energy and jet pseudo-rapidity. Dependences of the jet shape and the average number of subjets on the transverse energy and the pseudo-rapidity of the jet are observed. With increasing transverse jet energies and decreasing pseudo-rapidities, i.e.towards the photon hemisphere, the jets are more collimated. QCD models give a fair description of the data.

24 data tables match query

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range < 1.5 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range 1.5 TO 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range > 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

More…

Version 2
Production of D*+- mesons with dijets in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 271-287, 2007.
Inspire Record 736052 DOI 10.17182/hepdata.45686

Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.

62 data tables match query

Visible cross section for inclusive D*+- production.

Visible cross section for inclusive D*+- production.

Visible cross section for inclusive D*+- production with two jets.

More…

Measurement of $D^\pm$ production in deep inelastic $ep$ scattering with the ZEUS detector at HERA

The ZEUS collaboration Abt, I. ; Adamczyk, L. ; Adamus, M. ; et al.
JHEP 05 (2013) 023, 2013.
Inspire Record 1220382 DOI 10.17182/hepdata.62364

Charm production in deep inelastic ep scattering was measured with the ZEUS detector using an integrated luminosity of 354 pb^{-1}. Charm quarks were identified by reconstructing D^{+} mesons in the D^{+} -> K^{-} pi^{+} pi^{+} decay channel. Lifetime information was used to reduce combinatorial background substantially. Differential cross sections were measured in the kinematic region 5 < Q^{2} < 1000 GeV^{2}, 0.02 < y < 0.7, 1.5 < p_{T}(D^{+}) < 15 GeV and |eta(D^{+})| < 1.6, where Q^{2} is the photon virtuality, y is the inelasticity, and p_{T}(D^{+}) and eta(D^{+}) are the transverse momentum and the pseudorapidity of the D^{+} meson, respectively. Next-to-leading-order QCD predictions are compared to the data. The charm contribution, F_{2}^{cc}, to the proton structure-function F_{2} was extracted.

12 data tables match query

The bin-averaged differential cross section as a function of Q^2. The (sys) error is the experimental systematic uncertainty, excluding the luminosity and branching ratio uncertainties.

The bin-averaged differential cross section as a function of Y. The (sys) error is the experimental systematic uncertainty, excluding the luminosity and branching ratio uncertainties.

The bin-averaged differential cross section as a function of PT. The (sys) error is the experimental systematic uncertainty, excluding the luminosity and branching ratio uncertainties.

More…

Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 765 (2007) 1-30, 2007.
Inspire Record 724050 DOI 10.17182/hepdata.45641

Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q2 > 125 GeV2 with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. Jets were identified in the Breit frame using the kt cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q2. Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions.

17 data tables match query

Dijet cross section as a function of Q**2 in the Breit frame.

Dijet cross section as a function of Bjorken X in the Breit frame.

Dijet cross section as a function of the mean ET of the jets in the Breit frame.

More…

Measurement of inelastic J/psi and psi^prime photoproduction at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 02 (2013) 071, 2013.
Inspire Record 1204785 DOI 10.17182/hepdata.62399

The cross sections for inelastic photoproduction of J/psi and psi^prime mesons have been measured in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 468 pb-1 collected in the period 1996--2007. The psi^prime to J/psi cross section ratio was measured in the range 0.55 < z < 0.9 and 60 < W < 190 GeV as a function of W, z and p_T. Here W denotes the photon-proton centre-of-mass energy, z is the fraction of the incident photon energy carried by the meson and p_T is the transverse momentum of the meson with respect to the beam axis. The J/psi cross sections were measured for 0.1 < z < 0.9, 60 < W < 240 GeV and p_T > 1 GeV. Theoretical predictions within the non-relativistic QCD framework including NLO colour--singlet and colour--octet contributions were compared to the data, as were predictions based on the k_T--factorisation approach.

12 data tables match query

Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of PT.

Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of W.

Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of Z.

More…

Measurement of high-Q2 neutral current deep inelastic e+p scattering cross sections with a longitudinally polarised positron beam at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev.D 87 (2013) 052014, 2013.
Inspire Record 1183813 DOI 10.17182/hepdata.62614

Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarised positron beam are presented. The single-differential cross-sections d(sigma)/dQ2, d(sigma)/dx and d(sigma)/dy and the reduced cross-section were measured in the kinematic region Q2 > 185 GeV2 and y < 0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable, and y the inelasticity of the interaction. The measurements were performed separately for positively and negatively polarised positron beams. The measurements are based on an integrated luminosity of 135.5 pb-1 collected with the ZEUS detector in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The structure functions F3 and F3(gamma)Z were determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.

26 data tables match query

The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for zero polarisation, Pe=0.

The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.

The single-differential cross section DSIG/DX (Y<0.9,Y(1-x)**2>0.004) at Q^2=185 GeV^2, corrected to the electroweak Born level, for zero (Pe=0), positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.

More…