A Comparative Investigation of Low Mass (pi+ omega) and (K- omega) Systems at Various Energies

The Aachen-Berlin-Bonn-CERN-Heidelberg-London-Vienna collaboration Otter, G. ; Becker, L ; Dornan, P J ; et al.
Nucl.Phys.B 87 (1975) 189-206, 1975.
Inspire Record 91251 DOI 10.17182/hepdata.32066

A comparison is made of the properties and production mechanisms of the π + ω and K − ω systems produced in the reactions π + p → π + ω p at 4, 5, 8 and 16 GeV/ c and K − p → K − ω p at 10 and 16 GeV/ c . In the π + ω case apeak is observed at 1.23 GeV (the B meson), while the K − ω mass distribution has a threshold enhancement. The cross section of the low mass (<2.0 GeV) π + ω system falls as p lab −2 , while that of the low mass (<2.0 GeV) K − ω system is almost constant with energy, indicating diffractive production of the K − ω system, but not of the πω system. Using a modified version of the Illinois partial-wave analysis program, it is found that the K − ω system is dominantly produced in the J P = 1 + state with small contributions of 0 − and 2 + , mainly by natural parity exchange - as is found for reactions such as K − p → (K − π + π − )p which are predominantly diffractive. For the π + ω system in the B mass region, J P = 1 + states, produced mainly by natural parity exchange are found; the contributions of 0 − P, 1 − P, 2 − P and 2 + D are consistent with zero. The 1 + D state occurs in the π + ω case but not in the K − ω system, nor in the K ππ − system produced in the K − p → K ππ p reaction.

4 data tables

No description provided.

No description provided.

FROM BREIT-WIGNER FIT TO B EVENTS AND CORRECTED FOR UNSEEN OMEGA DECAY MODES.

More…

Study of the reaction k+ p ---> k*0(890) delta++ from 4.6-16.0 gev/c

Ciapetti, G. ; Eisner, R.L. ; Irving, A.C. ; et al.
Nucl.Phys.B 64 (1973) 58-108, 1973.
Inspire Record 94946 DOI 10.17182/hepdata.6741

A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.

20 data tables

No description provided.

No description provided.

No description provided.

More…