The transverse and longitudinal cross sections for electroproduction of pions near the Δ(1236)-isobar

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Lett.B 27 (1968) 660-662, 1968.
Inspire Record 1389642 DOI 10.17182/hepdata.29204

The reaction e + p → e ′+ N ∗ was studied for four momentum transfers up to 2.34 (GeV/ c ) 2 in the region of the 1236 MeV isobar. An analysis of the data in terms of the cross sections σ T and σ L for the absorption of transverse and longitudinal photons is given for invariant masses of the final pion nucleon system W =1.220 GeV and W =1.350 GeV.

3 data tables

Total errors are presented.

Total errors are presented.

Total errors are presented.


Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

306 data tables

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1300 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1500 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1700 GeV.

More…

A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

46 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Antilambda polarization in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Nucl.Phys.B 605 (2001) 3-14, 2001.
Inspire Record 554759 DOI 10.17182/hepdata.48928

We present a measurement of the polarization of Antilambda hyperons produced in nu_mu charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper for the case of Lambda hyperons. The Antilambda polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.

2 data tables

Lambdabar polarization in regions of Feynman X (XL).

Lambdabar polarization in regions of the Bjorken scaling variable X.


RESULTS FOR NEUTRAL TO CHARGED CURRENT CROSS-SECTION RATIOS FROM neutrino AND anti-neutrino NUCLEUS INTERACTIONS BELOW 30-GeV

Ammosov, V.V. ; Baranov, D.S. ; Ermolaev, V.I. ; et al.
Z.Phys.C 30 (1986) 569, 1986.
Inspire Record 215972 DOI 10.17182/hepdata.15876

Using the freon filled bubble chamber SKAT in the (anti)neutrino wide band beam of the Serpukhov accelerator we determine the neutral to charged current cross section ratios for neutrinos and antineutrinos below 30GeV. From these ratios we calculate in leading order a mixing parameter of the standard model of Θw=0.215±0.029.

3 data tables

Axis error includes +- 0.0/0.0 contribution (?////TOTAL SYSTEMATICS).

Axis error includes +- 0.0/0.0 contribution (?////TOTAL SYSTEMATICS).

Axis error includes +- 0.0/0.0 contribution (?////TOTAL SYSTEMATICS).


Study of Low-energy Anti-neutrino Interactions on Protons

Fanourakis, G. ; Resvanis, L.K. ; Grammatikakis, G. ; et al.
Phys.Rev.D 21 (1980) 562, 1980.
Inspire Record 9011 DOI 10.17182/hepdata.24171

We present a study of antineutrino interactions in hydrogen obtained in a 138000-picture run at the BNL 7-ft bubble chamber. The antineutrino beam had an energy distribution that peaked at ∼1.1 GeV. The cross section measured for charged-current interactions is σ(ν¯p→μ++anything)=(0.32±0.08)×10−38×[Eν¯ (GeV)] cm2. The neutral-current cross section is σ(ν¯p→ν¯pπ+π−)=5.5−2.6+4.4×10−40 cm2. The ratio of strangeness-changing to non-strangeness-changing charged currents is Rs=0.06−0.05+0.13. An upper limit determined for charm production is σc<3.8×10−40 cm2 at the 90% confidence level. From the momentum-transfer distribution we measure average Q2 for inelastic charged-current events with energy greater than 2 GeV, 〈Q2〉=(0.10±0.03)[Eν¯ (GeV)]+(0.10±0.09) (GeV/c)2. Using a maximum-likelihood method we determine from the quasielastic events ν¯p→μ+n an axial-vector mass MA=0.9−0.3+0.4 GeV/c2.

1 data table

Measured charged current total cross section.


ELECTROPRODUCTION CROSS-SECTIONS IN THE RESONANCE REGION MEASURED AT LARGE SCATTERING ANGLES

Gerhardt, B. ; Muller, H. ; Drees, J. ; et al.
Z.Phys.C 7 (1980) 11-15, 1980.
Inspire Record 160216 DOI 10.17182/hepdata.14097

To complete data on resonance electroproduction we constructed an electron spectrometer with large angular and momentum acceptance. As a first result inclusive cross sections for an invariant hadronic mass 1.2<W<1.7 GeV and a four momentum transfer squared 0.5<Q2<1.5 (GeV/c)2 and for values of the polarization parameter 0.1<ɛ<0.25 are presented. Combining our results with the SLAC 4°-data we obtain σL/σT in the specified kinematical range.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Electroproduction of pions near the $\Delta(1236)$ isobar and the form-factor $G^*_M(q^2)$ of the $({\gamma} N\Delta)$ vertex

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Lett.B 28 (1968) 148-151, 1968.
Inspire Record 52791 DOI 10.17182/hepdata.45279

The cross section for inelastic electron-proton scattering was measured at incident electron energies of 1.5 to 6 GeV by magnetic analysis of the scattered electrons at angles between 10° and 35°. For invariant masses of the hardonic final state W ⩽ 1.4 GeV. the measured spectra are compared with theoretical predictions for electroproduction of the Δ(1236) isobar. The magnetic dipole transition form factor G ∗ M ( q 2 ) of the (γ N Δ)-vertex is derived for momentum transfers q 2 = 0.2 − 2.34 (GeV/ c ) 2 ard found to decrease more rapidly with q 2 than the proton form factors.

1 data table

Axis error includes +- 0.0/0.0 contribution.