Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

41 data tables

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

K0(s) and Lambda0 production studies in p anti-p collisions at s**(1/2) = 1800 and 630-GeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 72 (2005) 052001, 2005.
Inspire Record 681320 DOI 10.17182/hepdata.42774

We present a study of the production of K_s^0 and Lambda^0 in inelastic pbar-p collisions at sqrt(s)= 1800 and 630 GeV using data collected by the CDF experiment at the Fermilab Tevatron. Analyses of K_s^0 and Lambda^0 multiplicity and transverse momentum distributions, as well as of the dependencies of the average number and <p_T> of K_s^0 and Lambda^0 on charged particle multiplicity are reported. Systematic comparisons are performed for the full sample of inelastic collisions, and for the low and high momentum transfer subsamples, at the two energies. The p_T distributions extend above 8 GeV/c, showing a <p_T> higher than previous measurements. The dependence of the mean K_s^0(Lambda^0) p_T on the charged particle multiplicity for the three samples shows a behavior analogous to that of charged primary tracks.

36 data tables

K0S inclusive invariant PT distribution for HARD events at a centre of massenergy 1800 GeV.

K0S inclusive invariant PT distribution for MB events at a centre of mass energy 1800 GeV.

K0S inclusive invariant PT distribution for SOFT events at a centre of massenergy 1800 GeV.

More…

Direct photon cross section with conversions at CDF

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 70 (2004) 074008, 2004.
Inspire Record 648506 DOI 10.17182/hepdata.42869

We present a measurement of the isolated direct photon cross section in p-pbar collisions at sqrt(s) = 1.8 TeV and |eta| &lt; 0.9 using data collected between 1994 and 1995 by the Collider Detector at Fermilab (CDF). The measurement is based on events where the photon converts into an electron-positron pair in the material of the inner detector, resulting in a two-track event signature. To remove pi0 -> gamma gamma and eta -> gamma gamma events we use a new background subtraction technique which takes advantage of the tracking information available in a photon conversion event. We find that the shape of the cross section as a function of pT is poorly described by next-to-leading-order QCD predictions, but agrees with previous CDF measurements.

1 data table

Axis error includes +- 28/18 contribution (Correlated systematic error included in quadrature in the systematic errors.).


The Underlying event in hard interactions at the Tevatron anti-p p collider

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 70 (2004) 072002, 2004.
Inspire Record 647490 DOI 10.17182/hepdata.22135

For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at $\sqrt{s}=1800$ GeV and $\sqrt{s}=630$ GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in $\eta$--$\phi$ space are defined, at the same pseudo-rapidity, $\eta$, as the jet with the highest transverse energy ($E_T^{(1)}$), and at $\pm 90^o$ in the azimuthal direction, $\phi$. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of $E_T^{(1)}$ and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet $E_T^{(1)}$ over most of the measured range. This study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. %this is new The distribution of the sum of the track momenta in the two cones is also examined for five different $E_T^{(1)}$ bins. The HERWIG and PYTHIA Monte Carlos are reasonably successful in describing the data, but neither can describe completely all of the event properties.

11 data tables

Average PT inside the max and min cone for cm energy 1800 GeV.

Data points read from plot.

Data points read from plot.

More…

Cross-section for forward J / psi production in p anti-p collisions at S = 1.8-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 66 (2002) 092001, 2002.
Inspire Record 603674 DOI 10.17182/hepdata.22217

The inclusive cross section for J/ψ production times the branching ratio B(J/ψ→μ+μ−) has been measured in the forward pseudorapidity region: B×dσ[p¯+p→J/ψ(pT>10GeV/c,2.1<|η|<2.6)+X]/dη=192±9(stat)±29(syst)pb. The results are based on 74.1±5.2pb−1 of data collected by the CDF Collaboration at the Fermilab Tevatron Collider. The measurements extend earlier measurements of the D0 Collaboration to higher pTJ/ψ. In the kinematic range where the experiments partially overlap, these data are in good agreement with previous measurements.

2 data tables

The integrated cross section for J/PSI --> MU+ MU- decay.

Cross section as a function of PT. Statistical errors only.


Branching ratio measurements of exclusive B+ decays to charmonium with the Collider Detector at Fermilab

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 66 (2002) 052005, 2002.
Inspire Record 588090 DOI 10.17182/hepdata.56734

We report on measurements of the branching ratios of the decays B+→χc10(1P)K+ and B+→J/ψK+π+π−, where χc10(1P)→J/ψγ and J/ψ→μ+μ− in pp¯ collisions at s=1.8TeV. Using a data sample from an integrated luminosity of 110pb−1 collected by the Collider Detector at Fermilab we measure the branching ratios to be BR(B+→χc10(1P)K+)=15.5±5.4(stat)±1.5(syst)±1.3(br)×10−4 and BR(B+→J/ψK+π+π−)=6.9±1.8(stat)±1.1(syst)±0.4(br)×10−4 where (br) is due to the finite precision on BR(B+→J/ψK+), BR(χc10(1P)→J/ψγ) is used to normalize the signal yield, and (syst) encompasses all other systematic uncertainties.

2 data tables

Branching ratio for B+ decay in chi_c1(1P) and K+ Last error is due to finite precision on the branching ratio for chi_c1(1P) --> J/psi photon.

Branching ratio for B+ decay in J/psi K+ pi+ pi- Last error is due to finite precision on the branching ratio for B+ --> J/psi K+.


Comparison of the isolated direct photon cross-sections in p anti-p collisions at s**(1/2) = 1.8-TeV and s**(1/2) = 0.63-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 65 (2002) 112003, 2002.
Inspire Record 581379 DOI 10.17182/hepdata.42882

We have measured the cross sections $d^2\sigma/dP_T d\eta$ for production of isolated direct photons in \pbarp collisions at two different center-of-mass energies, 1.8 TeV and 0.63 TeV, using the Collider Detector at Fermilab (CDF). The normalization of both data sets agree with the predictions of Quantum Chromodynamics (QCD) for photon transverse momentum ($P_T$) of 25 GeV/c, but the shapes versus photon $P_T$ do not. These shape differences lead to a significant disagreement in the ratio of cross sections in the scaling variable $x_T (\equiv 2P_T/\sqrt{s}$). This disagreement in the $x_T$ ratio is difficult to explain with conventional theoretical uncertainties such as scale dependence and parton distribution parameterizations.

2 data tables

The 1800 GeV isolated photon cross section. The systematic (DSYS) uncertainties include the normalisation uncertainties which are 100 PCT correlated bin tobin.

The 630 GeV isolated photon cross section. The systematic (DSYS) uncertainties include the normalisation uncertainties which are 100 PCT correlated bin to bin.


Measurement of the associated gamma + muon +- production cross-section in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.D 60 (1999) 092003, 1999.
Inspire Record 494764 DOI 10.17182/hepdata.42121

We present the first measurement of associated direct photon + muon production in hadronic collisions, from a sample of 1.8 TeV $p \bar p$ collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from the Compton scattering process $cg \to c\gamma$, with the final state charm quark producing a muon. Hence this measurement is sensitive to the charm quark content of the proton. The measured cross section of $29\pm 9 pb^{-1}$ is compared to a leading-order QCD parton shower model as well as a next-to-leading-order QCD calculation.

1 data table

The statistical and systematic errors are added in quadrature.


Dijet production by color-singlet exchange at the Fermilab Tevatron

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 80 (1998) 1156-1161, 1998.
Inspire Record 447619 DOI 10.17182/hepdata.42182

We report a new measurement of dijet production by color-singlet exchange in pp¯ collisions at s=1.8TeV at the Fermilab Tevatron. In a sample of events with two jets of transverse energy ETjet>20GeV, pseudorapidity in the range 1.8<|ηjet|<3.5, and η1η2<0, we find that a fraction R=[1.13±0.12(stat)±0.11(syst)]% has a pseudorapidity gap within |η|<1 between the jets that can be attributed to color-singlet exchnage. The fraction R shows no significant dependence on ETjet or on the pseudorapidity separation between the jets.

1 data table

Q=SS and Q=OS means same-side and opposite-side events.


Search for first generation leptoquark pair production in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 79 (1997) 4327-4332, 1997.
Inspire Record 447250 DOI 10.17182/hepdata.42184

We present a search for first generation leptoquark with 110pb^1 of data collected with the CDF detector. We set 95% C.L. cross section limits as a function of the leptoquark mass.

1 data table

It is assumed that first generation scalar leptoquark has the ranching ratio to electron and quark equal to 1.