A Measurement of Muon Pair Production in $e^+ e^-$ Annihilation at Center-of-mass Energies 35-{GeV} $\le \sqrt{s} \le$ 46.8-{GeV}

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 40 (1988) 163-170, 1988.
Inspire Record 261668 DOI 10.17182/hepdata.1897

The reactione+e−→µ+µ− has been studied at centre of mass energies between 35.0 and 46.8 GeV using the TASSO detector at PETRA. We present measurements of the forward-backward charge asymmetry (Aμμ) and cross section σμμ for this reaction at three energies. At 35.0 GeV we obtain a cross section relative to the QED prediction ofRμμ=σμμ/σo=0.932±0.018±0.044 andAμμ=(−10.6−2.3+2.2±0.5)%. At 38.3 GeV we findRμμ=0.951±0.072−0.057+0.063 andAμμ=(+1.7−8.6+8.5±0.5)%. At 43.6 GeV we measureRμμ=0.921±0.037±0.055 andAμμ=(−17.6−4.3+4.4±0.5)%. Our results are in good agreement with the predictions of the standard model. Including previous TASSO data we present improved determinations of muonic electroweak parameters. We also report on lower limits of possible contributions from contact interactions.

7 data tables match query

If only one error is given, this is the sum of the statistical and systematic errors in quadrature.

The data are corrected for 'reduced QED' radiative corrections. Statistical errors only.

The data are corrected for 'reduced QED' radiative corrections. Statistical errors only.

More…

Charged particle multiplicities in nuclear collisions at 200-GeV/N

The NA35 collaboration Bächler, J. ; Bartke, J. ; Bialkowska, H. ; et al.
Z.Phys.C 51 (1991) 157-162, 1991.
Inspire Record 320907 DOI 10.17182/hepdata.14983

Data on multiplicities of charged particles produced in proton-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon are presented. It is shown that the mean multiplicity of negative particles is proportional to the mean number of nucleons participating in the collision both for nucleus-nucleus and proton-nucleus collisions. The apparent consistency of pion multiplicity data with the assumption of an incoherent superposition of nucleon-nucleon collisions is critically discussed.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurements of cross-sections and forward backward asymmetries at the Z resonance and determination of electroweak parameters

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Eur.Phys.J.C 16 (2000) 1-40, 2000.
Inspire Record 524027 DOI 10.17182/hepdata.49981

We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years 1993-95. A total luminosity of 103 pb^-1 was collected at centre-of-mass energies \sqrt{s} ~ m_Z and \sqrt{s} ~ m_Z +/- 1.8 GeV which corresponds to 2.5 million hadronic and 245 thousand leptonic events selected. These data lead to a significantly improved determination of Z parameters. From the total cross sections, combined with our measurements in 1990-92, we obtain the final results: m_Z = 91189.8 +/- 3.1 MeV, Gamma_Z = 2502.4 +/- 4.2 MeV, Gamma_had = 1741.1 +/- 3.8 MeV, Gamma_l = 84.14 +/- 0.17 MeV. An invisible width of Gamma_inv = 499.1 +/- 2.9 MeV is derived which in the Standard Model yields for the number of light neutrino species N_nu = 2.978 +/- 0.014. Adding our results on the leptonic forward-backward asymmetries and the tau polarisation, the effective vector and axial-vector coupling constants of the neutral weak current to charged leptons are determined to be \bar{g}_V^l = -0.0397 +/- 0.0017 and \bar{g}_A^l = -0.50153 +/- 0.00053.Including our measurements of the Z -> b \bar{b} forward-backward and quark charge asymmetries a value for the effective electroweak mixing angle of sin^2\bar{\theta}_W = 0.23093 +/- 0.00066 is derived. All these measurements are in good agreement with the Standard Model of electroweak interactions. Using all our measurements of electroweak observables an upper limit on the mass of the Standard Model Higgs boson of m_H < 133 GeV is set at 95% confidence level.

22 data tables match query

Updated values of coupling constants and electroweak mixing angle.

Cross sections for hadron production from the 1993 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.105 PCT.

Cross sections for hadron production from the 1994 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.088 PCT.

More…

Intermittency in hadronic decays of the Z0

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 262 (1991) 351-361, 1991.
Inspire Record 314631 DOI 10.17182/hepdata.29397

A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z 0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit “intermittent” behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.

3 data tables match query

Corrected factorial moments of the rapidity distribution with respect to the sphericity axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity distribution with respect to the electron beam axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity (with respect to the sphericityaxis) versus PHI distribution. For each point the NUMBER of bins are constructe d from equal numbers of YRAP and PHI bins. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.


Analysis of Z0 couplings to charged leptons

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 247 (1990) 458-472, 1990.
Inspire Record 297139 DOI 10.17182/hepdata.29630

The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0 . The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol− = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be a ̌ 2 ol v ̌ 2 ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants a ̌ 2 ol = 0.998±0.024 and v ̌ 2 ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2 θ w are found to be 0.998±0.024 and 0.233 +0.045 −0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2 θ w , the results sin 2 θ SM w = 0.233 +0.007 −0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: R z = 21.72 +0.71 −0.65 .

6 data tables match query

Cross sections corrected for the effects of efficiency and kinematic cuts. Errors have systematic effects folded.

Acceptance corrected cross sections. Statistical errors only.

Acceptance corrected cross sections. Statistical errors only.

More…

A Combined Analysis of the Hadronic and Leptonic Decays of the $\Z^0$

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 240 (1990) 497-512, 1990.
Inspire Record 294808 DOI 10.17182/hepdata.29720

We report on a measurement of the mass of the Z 0 boson, its total width, and its partial decay widths into hadrons and leptons. On the basis of 25 801 hadronic decays and 1999 decays into electrons, muons or taus, selected over eleven energy points between 88.28 GeV and 95.04 GeV, we obtain from a combined fit to hadrons and leptons a mass of M z =91.154±0.021 (exp)±0.030 (LEP) GeV, and a total width of Γ z =2.536±0.045 GeV. The errors on M z have been separated into the experimental error and the uncertainty due to the LEP beam energy. The measured leptonic partial widths are Γ ee =81.2±2.6 MeV, Γ μμ =82.6± 5.8 MeV, and Γ ττ =85.7±7.1 MeV, consistent with lepton universality. From a fit assuming lepton universality we obtain Γ ℓ + ℓ − = 81.9±2.0 MeV. The hadronic partial width is Γ had =1838±46 MeV. From the measured total and partial widths a model independent value for the invisible width is calculated to be Γ inv =453±44 MeV. The errors quoted include both the statistical and the systematic uncertainties.

4 data tables match query

Errors are statistical and point to point systematic luminosity error of 1 pct.

Measured values of e+ e- --> e+ e- cross section.

Corrected cross section. Corrections are for t-channel effects and loss of acollinear events near the boundary of the acceptance.

More…

Measurement of the QED longitudinal structure function of the photon using azimuthal correlations at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 49-55, 1997.
Inspire Record 426207 DOI 10.17182/hepdata.47704

We have studied azimuthal correlations in singly-tagged e+e− → e+e−μ+μ− events at an average Q2 of 5.2 GeV2. The data were taken with the OPAL detector at LEP at e+e− centre-of-mass energies close to the Z0 mass, with an integrated luminosity of approximately 100 pb−1. The azimuthal correlations are used to extract the ratio $F_{B}^{αmma}/F_{2}^{αmma}$ of the QED structure functions $F_{B}^{αmma}(x,Q^{2})$ and $F_{2}^{αmma}(x,Q^{2})$ of the photon. In leading order and neglecting the muon mass $F_{B}^{αmma}$ is expected to be identical to the longitudinal structure function $F_{L}^{αmma}$. The measurement of $F_{B}^{αmma}/F_{2}^{αmma}$ is found to be significantly different from zero and to be consistent with the QED prediction.

1 data table match query

No description provided.


Measurement of the Z0 line shape parameters and the electroweak couplings of charged leptons

The OPAL collaboration Alexander, G. ; Allison, John ; Allport, P.P. ; et al.
Z.Phys.C 52 (1991) 175-208, 1991.
Inspire Record 315269 DOI 10.17182/hepdata.14859

None

11 data tables match query

DATA FROM 1989 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.

DATA FROM 1990 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.

Cross sections corrected for the effects of efficiency and kinematic cuts and background. Data from 1989 run, reanalysed.

More…

Measurement of the Decay of the $\Z^0$ Into Lepton Pairs

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 235 (1990) 379-388, 1990.
Inspire Record 283146 DOI 10.17182/hepdata.29723

We report on a measurement of the processes e + e − →e + e − , e + e − → μ + μ − , and e + e − → τ + τ − near the Z 0 pole. On the basis of 163 e + e − , 101 μ + μ − and 87 τ + τ − events we obtain Γ ee =89±4±4 MeV, Γ μμ =85±9±6 MeV and Γ ττ =87±10±8 MeV, compatible with the standard model. Combining these with our previous results on hadronic Z 0 decays, we find a hadronic width Γ had =1787±81±90 MeV and an invisible width Γ inv =552±85±71 MeV.

2 data tables match query

Statistical errors only.

Statistical errors only.


Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

7 data tables match query

The cross section for hadron production corrected to the simple kinematic acceptance region defined by SPRIME/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

The cross section for E+ E- production corrected to the simple kinematic acceptance region defined by ABS(COS(THETA(C=E-))) < 0.7 and THETA(C=ACOL) < 10 degrees. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross sectionat the central value of SQRT(S).

The cross section for mu+ mu- production corrected to the simple kinematic acceptance region defined by N = M(P=3_4)**2/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

More…