None
No description provided.
No description provided.
Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.
No description provided.
No description provided.
No description provided.
Proton-proton elastic scattering has been measured over the four-momentum transfer squared 0.0007 ⩽ t ⩽ 0.02 GeV 2 /c 2 . A gas hydrogen jet has been used as an internal target of the accelerator. The results indicate that the ratio of the real to the imaginary part of the proton-proton forward scattering amplitude rises smoothly with increasing energy from α = −0.35 ± 0.05 at p = 9.39 GeV/ c to α = −0.092 ± 0.011 at p = 69.8 GeV/ c .
THE TOTAL ELASTIC CROSS SECTION IS DERIVED FROM THE OPTICAL THEOREM POINT AND SLOPE PARAMETER.
The total elastic p-p, p-d and p-n cross sections measured at the Serpukhov accelerator and Dubna synchrophasotron are presented in this paper.
SLOPE MEASURED FOR -T = 0.08 TO 0.12 GEV**2.
No description provided.
A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.
No description provided.
No description provided.
No description provided.
A partial-wave analysis of the (K ππ ) 0 system produced in the charge exchange reaction K − p →( K 0 π + π − ) n has been made in the mass range 1.04 ⩽ M (K ππ ) < 1.56 GeV c data at 8, 10 and 16 GeV/ c . It was found that in about 2 3 of the cases, the (K ππ ) 0 system is produced in states of unnatural spin-parity, namely J P = 0 − and 1 + ; the rest is in the natural spin-parity state J P = 2 + state is consistent with being all K ∗ (1420). The unnatural spin-parity states are produced mostly (∼ 80% of the events) by natural parity exchange. The facts that unnatural spin-parity states are produced in this non-diffractive channel, with J P = 1 + dominant, and that the exchange responsible for their production is mostly of natural parity, are similar to what was found for the charged (K ππ ) − system in the diffractive reaction K − p→(K ππ ) − p. However, the absolute value and the energy dependence of the cross sections are very different in the two cases.
CORRECTED FOR UNSEEN AK0 DECAY MODES.
ACTUALLY CROSS SECTIONS FOR PRODUCTION IN MASS REGION 1.04 < M(AK0 PI+ PI-) < 1.56 GEV IN THE STATES JP = 1+, 2+ AND 0- RESPECTIVELY.
None
No description provided.
No description provided.
A comparison is made of the properties and production mechanisms of the π + ω and K − ω systems produced in the reactions π + p → π + ω p at 4, 5, 8 and 16 GeV/ c and K − p → K − ω p at 10 and 16 GeV/ c . In the π + ω case apeak is observed at 1.23 GeV (the B meson), while the K − ω mass distribution has a threshold enhancement. The cross section of the low mass (<2.0 GeV) π + ω system falls as p lab −2 , while that of the low mass (<2.0 GeV) K − ω system is almost constant with energy, indicating diffractive production of the K − ω system, but not of the πω system. Using a modified version of the Illinois partial-wave analysis program, it is found that the K − ω system is dominantly produced in the J P = 1 + state with small contributions of 0 − and 2 + , mainly by natural parity exchange - as is found for reactions such as K − p → (K − π + π − )p which are predominantly diffractive. For the π + ω system in the B mass region, J P = 1 + states, produced mainly by natural parity exchange are found; the contributions of 0 − P, 1 − P, 2 − P and 2 + D are consistent with zero. The 1 + D state occurs in the π + ω case but not in the K − ω system, nor in the K ππ − system produced in the K − p → K ππ p reaction.
No description provided.
No description provided.
FROM BREIT-WIGNER FIT TO B EVENTS AND CORRECTED FOR UNSEEN OMEGA DECAY MODES.
A partial-wave analysis has been performed on the (K − π − π + ) system produced in the reaction K − p → K − π − π + p at 10 and 16 GeV/ c . In the Q mass region it is found that the two dominant states, K ∗ π and Kπ, both in 1 + S wave, are produced with different polarisations, helicity being approximately conserved in the t -channel for K ∗ π and in the s -channel for Kπ. This is in contradiction with the assumption that the amplitude can be factorised into “production” and “decay” parts, and hence that the two amplitudes are fully coherent. The phase variation of the two states do not indicate simple resonance behaviour. It is concluded that the Q-mass enhancement is composite.
No description provided.
No description provided.
The reactions K + p → K ∗+ (890) p , K + p → K ∗+ (1420) p and K + p → K 0 Δ ++ have been systematically studied for eleven incident momenta between 3.0 and 16.0 GeV/ c . Cross sections, differential cross sections and density matrix elements are presented. For K ∗ (890) production the contributions from natural and unnatural parity exchanges have also been separated into I = 0 and I = 1 components. Effective trajectories have been extracted in the case of natural parity exchange, and also for Δ ++ production.
No description provided.
DATA AT NEIGHBOURING MOMENTA ARE GROUPED TOGETHER. THE RESONANCE PRODUCTION TOTAL CROSS SECTIONS ARE FITTED BY P**-N. THIS TABLE GIVES THE VALUES FOR EACH GROUP OF MOMENTA OF THE FITTED TOTAL CROSS SECTIONS WHICH ARE USED TO NORMALIZE THE DIFFERENTIAL CROSS SECTIONS.
No description provided.