An analysis has been performed of neutrino and antineutrino interactions with protons and neutrons in a deuterium bubble chamber. The interactions under study are quasielastic neutrino-neutron scattering and one-, two- and three-pion production reactions. Results are presented on cross sections, effective mass distributions, resonance production, momentum transfer distributions and coefficients of the decay angular distributions. Where possible, comparisons are made with existing theoretical models and predictions.
No description provided.
Numerical values supplied by A.Tenner.
Numerical values supplied by A.Tenner.
The differential and channel cross sections have been measured for the reactions K L 0 p → K S 0 p and K L 0 p → Λ 0 π + in nine energy intervals in the c.m. range 1605 to 1910 MeV. The regeneration reaction is a combination of the KN amplitudes (with I = 0 and 1) and the K N amplitude ( I = 1) and is very sensitive to the various KN phase-shift solutions, some of which show an exotic I = 0, P 1 resonance. Our results have been expressed in terms of frequency distributions and cross sections, normalised by the Λ 0 π + reaction. These results have been compared with the predictions of various partial-wave analyses. Qualitatively we can eliminate the P 1 non-resonant solution, though no solution correctly predicts our results.
No description provided.
No description provided.
No description provided.
Results on the channels K − p → Λ 0 η 0 , Λ 0 π 0 , Σ 0 π 0 , Λ 0 π 0 π 0 and Σ 0 π 0 π 0 are obtained in a K − p formation experiment using 1 million photographs taken in a heavy liquid bubble chamber filled with a CF 3 BrC 3 H 8 mixture. The results are compared with hydrogen bubble chamber (HBC) experiments and with experiments having full or partial gamma-ray detection. Our Λ 0 π 0 and Λ 0 + neutral cross section agree with HBC results. Our Σ 0 π 0 cross section does not exhibit a bump at 1670 MeV as previously seen in HBC experiments. Our Λ 0 π 0 π 0 data are dominated by a Σ (1385) π 0 production. Our Σ 0 π 0 π 0 data is consistent with the presence of some Σ (1405) π 0 production.
No description provided.
No description provided.
No description provided.
Cross sections, differential cross sections, and hyperon polarization results are presented for the reactions K¯0p→Λπ+ and K¯0p→Σ0π+ in the momentum interval 1 to 12 GeV/c. Emphasis is placed on the comparison of Λ and Σ channels, and on the momentum dependences of the data. In particular, the Λ polarization data are consistent with being independent of energy above 2 GeV/c; and the slopes of the forward cross sections are found to increase toward the slope values for the line-reversed reactions πp→K(Λ,Σ) as energy increases.
No description provided.
No description provided.
RESONANCE REGION CROSS SECTIONS.
The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.
No description provided.
No description provided.
No description provided.