Production of $K \bar{K}$ Pairs in Photon-photon Collisions and the Excitation of the Tensor Meson F-prime (1515)

The TASSO collaboration Althoff, M. ; Brandelik, R. ; Braunschweig, W. ; et al.
Phys.Lett.B 121 (1983) 216-222, 1983.
Inspire Record 181468 DOI 10.17182/hepdata.30814

We have observed exclusive production of K + K − and K S O K S O pairs and the excitation of the f′(1515) tensor meson in photon-photon collisions. Assuming the f′ to be production in a helicity 2 state, we determine Λ( f ′ → γγ) B( f ′ → K K ) = 0.11 ± 0.02 ± 0.04 keV . The non-strange quark of the f′ is found to be less than 3% (95% CL). For the θ(1640) we derive an upper limit for the product Λ(θ rarr; γγ K K ) < 0.03 keV (95% CL ) .

0 data tables match query

Evidence for chain - like production of strange baryon pairs in jets

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 305 (1993) 415-427, 1993.
Inspire Record 353460 DOI 10.17182/hepdata.48367

The production dynamics of baryon-antibaryon pairs are investigated using hadronic Z 0 decays, recorded with the OPAL detector, which contain at least two identified Λ baryons. The rapidly difference for Λ Λ pairs shows the correlations expected from models with a chain-like production of baryon-antibaryon pairs. If the baryon number of a Λ is compensated by a Λ , the Λ is found with a probability of 53% in an interval of ±0.6 around the Λ rapidity. This correlation strength is weaker than predicted by the Herwig Monte Carlo and the Jetset Monte Carlo with a production chain of baryon-antibaryon, and stronger than predicted by the UCLA model. The observed rapidity correlations can be described by the Jetset Monte Carlo with a dominant production chain of baryon-meson-antibaryon, the popcorn mechanism. In addition to the short range correlations, one finds an indication of a correlation of Λ Λ pairs in opposite hemispheres if both the Λ and the Λ have large rapidities. Such long range correlations are expected if the primary quark flavours are compensated in opposite hemispheres and if these quarks are found in energetic baryons. Rates for simultaneous baryon and strangeness number compensation for Λ Λ , Ξ − Ξ + and Ξ − Λ ( Λ + Λ ) are measured and compared with different Monte Carlo models.

0 data tables match query

First measurement of the strange quark asymmetry at the Z0 peak

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 67 (1995) 1-14, 1995.
Inspire Record 382285 DOI 10.17182/hepdata.48256

None

0 data tables match query

K*0 and phi Meson Production in Proton-Nucleus Interactions at sqrt(s) = 41.6 GeV

The HERA-B collaboration Abt, I. ; Adams, M. ; Agari, M. ; et al.
Eur.Phys.J.C 50 (2007) 315-328, 2007.
Inspire Record 719788 DOI 10.17182/hepdata.43089

The inclusive production cross sections of the strange vector mesons K*0, K*0bar, and phi have been measured in interactions of 920 GeV protons with C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of rapidity and transverse momentum have been measured in the central rapidity region and for transverse momenta up to pT=3.5 GeV/c. The atomic number dependence is parametrised as sigma(pA) = sigma(pN)*A**alpha, where sigma(pN) is the proton-nucleon cross section. Within the phase space accessible, alpha(K*0) = 0.86+/-0.03, alpha(K*0bar) = 0.87+/-0.03, and alpha(phi) = 0.96+/-0.02. The total proton-nucleon cross sections, determined by extrapolating the differential measurements to full phase space, are sigma(pN->K*0) = 5.06+/-0.54 mb, sigma(pN->K*0bar) = 4.02+/-0.45 mb, and sigma(pN->phi) = 1.17+/-0.11 mb. The Cronin effect is observed for the first time for vector mesons containing strange quarks/ compared to the measurements of Cronin et al. for K+- mesons, the measured values of alpha for phi mesons coincide with those of K- mesons for all transverse momenta, while the enhancement for K*0 / K*0bar mesons is smaller.

0 data tables match query

Search for charged Higgs bosons using the OPAL detector at LEP

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Phys.Lett.B 370 (1996) 174-184, 1996.
Inspire Record 404814 DOI 10.17182/hepdata.48039

A search is described to detect charged Higgs bosons via the process Z 0 → H + H − , using data collected by the OPAL detector at LEP which correspond to an integrated luminosity of approximately 110 pb −1 . It is assumed that the H + boson decays only to τ + ν τ and c s final states. From the negative outcome of this search a lower bound of 44.1 GeV (95% CL) is derived for the mass of the charged Higgs boson.

0 data tables match query

Inclusive Sigma- and Lambda(1520) production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 475 (2000) 429-447, 2000.
Inspire Record 524694 DOI 10.17182/hepdata.49984

Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.

0 data tables match query

Measurements of BR(b --> tau- anti-nu/tau X) and BR(b --> tau- anti-nu/tau D*+- X) and upper limits on BR(B- --> tau- anti-nu/tau) and BR(b --> s nu anti-nu).

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 19 (2001) 213-227, 2001.
Inspire Record 534887 DOI 10.17182/hepdata.49822

Inclusive branching ratios involving b to tau transitions are measured in approximately four million hadronic Z decays collected by the ALEPH detector at LEP. The fully-inclusive branching ratio b -> tau nu X and the semi-inclusive branching ratio b -> tau nu D*+/- X are measured to be (2.43 +/- 0.20 +/- 0.25)% and (0.88 +/- 0.31 +/- 0.28)%, in agreement with the standard model predictions. Upper limits on the branching fractions b -> tau nu and b -> s nu nubar are set to 8.3 10**-4 and 6.4 10**-4 at the 90% C.L. These results allow a 90% C.L. lower limit of 0.40 (GeV/c**2)**-1 to be set on the tan(beta)/mH+/- ratio, in the framework of type-II two-Higgs-doublet mode

0 data tables match query

Precise measurement of the mass difference and the binding energy of hypertriton and antihypertriton

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Nature Phys. 16 (2020) 409-412, 2020.
Inspire Record 1731117 DOI 10.17182/hepdata.105279

According to the CPT theorem, which states that the combined operation of charge conjugation, parity transformation and time reversal must be conserved, particles and their antiparticles should have the same mass and lifetime but opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus containing a strange quark, more specifically in the hypertriton. This hypernucleus is the lightest one yet discovered and consists of a proton, a neutron, and a $\Lambda$ hyperon. With data recorded by the STAR detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure the $\Lambda$ hyperon binding energy $B_{\Lambda}$ for the hypertriton, and find that it differs from the widely used value{\cite{B_1973}} and from predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the hypertriton is treated as a weakly bound system. Our results place stringent constraints on the hyperon-nucleon interaction{\cite{Hammer2002, STAR-antiH3L}}, and have implications for understanding neutron star interiors, where strange matter may be present{\cite{Chatterjee2016}}. A precise comparison of the masses of the hypertriton and the antihypertriton allows us to test CPT symmetry in a nucleus with strangeness for the first time, and we observe no deviation from the expected exact symmetry.

0 data tables match query

Measurement of Lambda polarization from Z decays

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Phys.Lett.B 374 (1996) 319-330, 1996.
Inspire Record 415745 DOI 10.17182/hepdata.47830

The polarization of Λ baryons from Z decays is studied with the Aleph apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is P L Λ = −0.32 ± 0.07 for z = p p beam > 0.3 . This agrees with the prediction of −0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ Λ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.

0 data tables match query

Search for exotic strange quark matter in high energy nuclear reactions.

The E864 collaboration Armstrong, T.A. ; Barish, K.N. ; Bennett, S.J. ; et al.
Nucl.Phys.A 625 (1997) 494-512, 1997.
Inspire Record 446705 DOI 10.17182/hepdata.36251

We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.

0 data tables match query