Strange hadron collectivity in pPb and PbPb collisions

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 007, 2023.
Inspire Record 2075415 DOI 10.17182/hepdata.115425

The collective behavior of K$^0_\mathrm{S}$ and $\Lambda/\bar{\Lambda}$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy ($v_2$) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20\GeV is present. The strange hadron $v_2$ values extracted in \pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.

0 data tables match query

Measurement of prompt photon production in $\sqrt{s_\mathrm{NN}} = 8.16$ TeV $p$+Pb collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 796 (2019) 230-252, 2019.
Inspire Record 1723858 DOI 10.17182/hepdata.87256

The inclusive production rates of isolated, prompt photons in $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb$^{-1}$ recorded in 2016. The cross-section and nuclear modification factor $R_{p\mathrm{Pb}}$ are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and $R_{p\mathrm{Pb}}$ values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.

0 data tables match query

Transverse momentum and process dependent azimuthal anisotropies in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 73, 2020.
Inspire Record 1762209 DOI 10.17182/hepdata.94802

The azimuthal anisotropy of charged particles produced in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of $165$ $\mathrm{nb}^{-1}$ that was collected in 2016. Azimuthal anisotropy coefficients, elliptic $v_2$ and triangular $v_3$, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum ($p_\mathrm{T}$) between $0.5$ and $50$ GeV. The $v_2$ results are also reported as a function of centrality in three different particle $p_\mathrm{T}$ intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet $p_\mathrm{T}$ thresholds are used. The anisotropies for particles with $p_\mathrm{T}$ less than about $2$ GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for $p_\mathrm{T}$ in the range $9$-$50$ GeV are not explained within current theoretical frameworks. In the $p_\mathrm{T}$ range $2$-$9$ GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.

0 data tables match query

Multiparticle correlation studies in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 101 (2020) 014912, 2020.
Inspire Record 1731568 DOI 10.17182/hepdata.88288

The second- and third-order azimuthal anisotropy Fourier harmonics of charged particles produced in pPb collisions, at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV, are studied over a wide range of event multiplicities. Multiparticle correlations are used to isolate global properties stemming from the collision overlap geometry. The second-order "elliptic" harmonic moment is obtained with high precision through four-, six-, and eight-particle correlations and, for the first time, the third-order "triangular" harmonic moment is studied using four-particle correlations. A sample of peripheral PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV that covers a similar range of event multiplicities as the pPb results is also analyzed. Model calculations of initial-state fluctuations in pPb and PbPb collisions can be directly compared to the high precision experimental results. This work provides new insight into the fluctuation-driven origin of the $v_3$ coefficients in pPb and PbPb collisions, and into the dominating overall collision geometry in PbPb collisions at the earliest stages of heavy ion interactions.

0 data tables match query

W$^\pm$-boson production in p$-$Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2023) 036, 2023.
Inspire Record 2071184 DOI 10.17182/hepdata.133034

The production of the W$^\pm$ bosons measured in p$-$Pb collisions at a centre-of-mass energy per nucleon$-$nucleon collision $\sqrt{s_{NN}} = 8.16$ TeV and Pb$-$Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE at the LHC is presented. The W$^\pm$ bosons are measured via their muonic decay channel, with the muon reconstructed in the pseudorapidity region $-4 < \eta^\mu_{\rm lab} < -2.5$ with transverse momentum $p_{\rm T}^\mu > 10$ GeV/$c$. While in Pb$-$Pb collisions the measurements are performed in the forward ($2.5 < y^\mu_{\rm cms} < 4$) rapidity region, in p$-$Pb collisions, where the centre-of-mass frame is boosted with respect to the laboratory frame, the measurements are performed in the backward ($-4.46 < y^\mu_{\rm cms} < -2.96$) and forward ($2.03 < y^\mu_{\rm cms} < 3.53$) rapidity regions. The W$^{-}$ and W$^{+}$ production cross sections, lepton-charge asymmetry, and nuclear modification factors are evaluated as a function of the muon rapidity. In order to study the production as a function of the p$-$Pb collision centrality, the production cross sections of the W$^{-}$ and W$^{+}$ bosons are combined and normalised to the average number of binary nucleon$-$nucleon collision $\langle N_\mathrm{coll} \rangle$. In Pb$-$Pb collisions, the same measurements are presented as a function of the collision centrality. Study of the binary scaling of the W$^\pm$-boson cross sections in p$-$Pb and Pb$-$Pb collisions is also reported. The results are compared with perturbative QCD (pQCD) calculations, with and without nuclear modifications of the Parton Distribution Functions (PDFs), as well as with available data at the LHC. Significant deviations from the theory expectations are found in the two collision systems, indicating that the measurements can provide additional constraints for the determination of nuclear PDF (nPDFs) and in particular of the light-quark distributions.

0 data tables match query

Observation of correlated azimuthal anisotropy Fourier harmonics in pp and pPb collisions at the LHC

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 092301, 2018.
Inspire Record 1626103 DOI 10.17182/hepdata.79667

The azimuthal anisotropy Fourier coefficients ($v_n$) in 8.16 TeV pPb data are extracted via long-range two-particle correlations as a function of event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, $v_n$ correlations are measured for the first time in pp and pPb collisions. The $v_2$ and $v_4$ coefficients are found to be positively correlated in all collision systems. For high multiplicity pPb collisions an anticorrelation of $v_2$ and $v_3$ is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in pPb and PbPb collisions in the measured multiplicity range.

0 data tables match query

Study of Drell-Yan dimuon production in proton-lead collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 182, 2021.
Inspire Record 1849180 DOI 10.17182/hepdata.88292

Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb$^{-1}$. The differential cross section as a function of the dimuon mass is measured in the range 15-600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15-60 GeV and 60-120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum $p_\mathrm{T}$ and of a geometric variable $\phi^*$ are measured, where $\phi^*$ highly correlates with $p_\mathrm{T}$ but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.

0 data tables match query

Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 813 (2021) 136036, 2021.
Inspire Record 1817310 DOI 10.17182/hepdata.93883

Measurements of the second Fourier harmonic coefficient ($v_2$) of the azimuthal distributions of prompt and nonprompt D$^0$ mesons produced in pp and pPb collisions are presented. Nonprompt D$^0$ mesons come from beauty hadron decays. The data samples are collected by the CMS experiment at nucleon-nucleon center-of-mass energies of 13 and 8.16 TeV, respectively. In high multiplicity pp collisions, $v_2$ signals for prompt charm hadrons are reported for the first time, and are found to be comparable to those for light-flavor hadron species over a transverse momentum ($p_\mathrm{T}$) range of 2-6 GeV. Compared at similar event multiplicities, the prompt D$^0$ meson $v_2$ values in pp and pPb collisions are similar in magnitude. The $v_2$ values for open beauty hadrons are extracted for the first time via nonprompt D$^0$ mesons in pPb collisions. For $p_\mathrm{T}$ in the range of 2-5 GeV, the results suggest that $v_2$ for nonprompt D$^0$ mesons are smaller than those for prompt D$^0$ mesons. These new measurements indicate a positive charm hadron $v_2$ in pp collisions and suggest a mass dependence in $v_2$ between charm and beauty hadrons in the pPb system. These results provide insights into the origin of heavy-flavor quark collectivity in small systems.

0 data tables match query

Multiplicity and transverse momentum dependence of charge-balance functions in pPb and PbPb collisions at LHC energies

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-HIN-21-017, 2023.
Inspire Record 2679254 DOI 10.17182/hepdata.135972

Measurements of the charge-dependent two-particle angular correlation function in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at$\sqrt{s_\mathrm{NN}}$ = 5.02 TeV are reported. The pPb and PbPb datasets correspond to integrated luminosities of 186\nbinv and 0.607 nb$^{-1}$, respectively, and were collected using the CMS detector at the CERN LHC. The charge-dependent correlations are characterized by balance functions of same- and opposite-sign particle pairs. The balance functions, which contain information about the creation time of charged particle pairs and the development of collectivity, are studied as functions of relative pseudorapidity ($\Delta \eta$) and relative azimuthal angle ($\Delta \phi$), for various multiplicity and transverse momentum ($p_\mathrm{T}$) intervals. A multiplicity dependence of the balance function is observed in $\Delta \eta$ and $\Delta \phi$ for both systems. The width of the balance functions decreases towards high-multiplicity collisions in the momentum region $\lt$2 GeV, for pPb and PbPb results. No multiplicity dependence is observed at higher transverse momentum. The data are compared with HYDJET, HIJING and AMPT generator predictions, none of which capture completely the multiplicity dependence seen in the data.

0 data tables match query

Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 09 (2020) 076, 2020.
Inspire Record 1797444 DOI 10.17182/hepdata.97372

Measurement of Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV is reported. It is performed in the dimuon decay channel, through the detection of muons with pseudorapidity $-4 < \eta_{\mu} < -2.5$ and transverse momentum $p_{\rm T}^{\mu} > 20$ GeV/$c$ in the laboratory frame. The invariant yield and nuclear modification factor are measured for opposite-sign dimuons with invariant mass $60 < m^{\mu\mu} < 120$ GeV$c^2$ and rapidity $2.5 < y_{cms}^{\mu\mu} < 4$. They are presented as a function of rapidity and, for the Pb-Pb collisions, of centrality as well. The results are compared with theoretical calculations, both with and without nuclear modifications to the Parton Distribution Functions (PDFs). In p-Pb collisions the center-of-mass frame is boosted with respect to the laboratory frame, and the measurements cover the backward ($-4.46< y_{cms}^{\mu\mu}<-2.96$) and forward ($2.03< y_{cms}^{\mu\mu}<3.53$) rapidity regions. For the p-Pb collisions, the results are consistent within experimental and theoretical uncertainties with calculations that include both free-nucleon and nuclear-modified PDFs. For the Pb-Pb collisions, a $3.4\sigma$ deviation is seen in the integrated yield between the data and calculations based on the free-nucleon PDFs, while good agreement is found once nuclear modifications are considered.

0 data tables match query