Measurement of nucleon structure functions in neutrino scattering.

The CHORUS collaboration Onengut, G. ; van Dantzig, R. ; de Jong, M. ; et al.
Phys.Lett.B 632 (2006) 65-75, 2006.
Inspire Record 699123 DOI 10.17182/hepdata.6187

After completion of the data taking for the νμ→ντ oscillation search, the CHORUS lead–scintillator calorimeter was used in the 1998 run as an active target. High-statistics samples of charged-current interactions were collected in the CERN SPS west area neutrino beam. This beam contained predominantly muon (anti-)neutrinos from sign-selected pions and kaons. We measure the flux and energy spectrum of the incident neutrinos and compare them with beam simulations. The neutrino–nucleon and anti-neutrino–nucleon differential cross-sections are measured in the range 0.01<x<0.7 , 0.05<y<0.95 , 10<Eν<200 GeV . We extract the neutrino–nucleon structure functions F2(x,Q2) , xF3(x,Q2) , and R(x,Q2) and compare these with results from other experiments.

121 data tables

The measured F2 and xF3 at X = 0.020.

The measured F2 and xF3 at X = 0.045.

The measured F2 and xF3 at X = 0.080.

More…

Experimental Study of X Distributions in Semileptonic Neutral Current Neutrino and Anti-neutrino Reactions

The CHARM collaboration Allaby, J.V. ; Amaldi, U. ; Barbiellini, G. ; et al.
Phys.Lett.B 213 (1988) 554-561, 1988.
Inspire Record 264997 DOI 10.17182/hepdata.29877

Using the CHARM detector 36 000 deep inelastic neutral-current reactions of neutrinos (and 2000 of antineutrinos) from the 160 GeV narrow-band beam were recorded. The differential cross section d σ d x in the Bjorken scaling variable x was computed by unfolding the effects of limited acceptance and of resolution of the detector as well as the ambiguity of the energy of the incoming neutrinos (produced by π- or K-decay). Combining the results from the neutrino and antineutrino data, the structure functions F 2 and xF 3 and the antiquark momentum distribution measured via the NC coupling were determined. The distributions are in agreement with the corresponding CC distibutions. Comparisons with deep inelastic muon scattering confirm the universality of nuclear structure functions as probed by the weak and the electromagnetic currents.

1 data table

SEE THE PAPER FOR THE PRECISE DEFNS OF F(+), F(-).


INCLUSIVE STUDY OF NEUTRINO AND ANTI-NEUTRINO INTERACTIONS WITH NUCLEI AT ENERGIES E anti-neutrino <= 30-GeV

Ammosov, V.V. ; Baranov, D.S. ; Bugorsky, A.P. ; et al.
Z.Phys.C 30 (1986) 175, 1986.
Inspire Record 215974 DOI 10.17182/hepdata.15918

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

Experimental Study of the Nucleon Structure Functions and of the Gluon Distribution from Charged Current Neutrino and anti-neutrinos Interactions

The CHARM collaboration Bergsma, F. ; Dorenbosch, J. ; Jonker, M. ; et al.
Phys.Lett.B 123 (1983) 269, 1983.
Inspire Record 181908 DOI 10.17182/hepdata.30729

Inclusive neutrino and antineutrino charged current interactions were studied in the CHARM detector exposed to neutrino and antineutrino Wide Band Beams of the CERN 400 GeV SPS. The x and Q 2 dependence of the structure functions F 2 and xF 3 and of the antiquark momentum distribution q were determined. The data have been interpreted in terms of QCD theory using the Furmanski-Petronzio method. In this way we have determined Λ LO = [190 −40 +70 ( stat ) ± 70 ( syst .)] MeV and the structure functions of quarks and gluons without specific assumptions on their analytic dependence. The results agree with previous experiments which relied on model assumptions in the analysis. We conclude that the model independent simultaneous analysis of the xF 3 , F 2 , q structure functions gives a more reliable determination of the gluon distribution in the nucleon.

2 data tables

No description provided.

HERE THE QBAR IS D2(SIG(ANU))/DX/DY - (1-Y)**2*D2(SIG(NU))/DX/DY.