Azimuthal anisotropy in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 72 (2005) 014904, 2005.
Inspire Record 660793 DOI 10.17182/hepdata.93262

The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.

0 data tables match query

Multiplicity dependence of charged-particle jet production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 82 (2022) 514, 2022.
Inspire Record 2026265 DOI 10.17182/hepdata.130653

The multiplicity dependence of jet production in pp collisions at the centre-of-mass energy of $\sqrt{s} = 13\ \mathrm{TeV}$ is studied for the first time. Jets are reconstructed from charged particles using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R$ varying from $0.2$ to $0.7$. The jets are measured in the pseudorapidity range $|\eta_{\rm jet}|< 0.9-R$ and in the transverse momentum range $5<p_\mathrm{T,jet}^{\rm ch}<140\ \mathrm{GeV}/c$. The multiplicity intervals are categorised by the ALICE forward detector V0. The $p_{\mathrm{T}}$ differential cross section of charged-particle jets are compared to leading order (LO) and next-to-leading order (NLO) perturbative quantum chromodynamics (pQCD) calculations. It is found that the data are better described by the NLO calculation, although the NLO prediction overestimates the jet cross section below $20\ \mathrm{GeV}/c$. The cross section ratios for different $R$ are also measured and compared to model calculations. These measurements provide insights into the angular dependence of jet fragmentation. The jet yield increases with increasing self-normalised charged-particle multiplicity. This increase shows only a weak dependence on jet transverse momentum and resolution parameter at the highest multiplicity. While such behaviour is qualitatively described by the present version of PYTHIA, quantitative description may require implementing new mechanisms for multi-particle production in hadronic collisions.

0 data tables match query

First measurements of N-subjettiness in central Pb-Pb collisions at $ \sqrt{s_{\mathrm{NN}}} $ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 10 (2021) 003, 2021.
Inspire Record 1862792 DOI 10.17182/hepdata.111055

The ALICE Collaboration reports the first fully-corrected measurements of the $N$-subjettiness observable for track-based jets in heavy-ion collisions. This study is performed using data recorded in pp and Pb$-$Pb collisions at centre-of-mass energies of $\sqrt{s} = 7$ TeV and $\sqrt{s_{\rm NN}} = 2.76$ TeV, respectively. In particular the ratio of 2-subjettiness to 1-subjettiness, $\tau_{2}/\tau_{1}$, which is sensitive to the rate of two-pronged jet substructure, is presented. Energy loss of jets traversing the strongly interacting medium in heavy-ion collisions is expected to change the rate of two-pronged substructure relative to vacuum. The results are presented for jets with a resolution parameter of $R = 0.4$ and charged jet transverse momentum of $40 \leq p_{\rm T,\rm jet} \leq 60$ GeV/$c$, which constitute a larger jet resolution and lower jet transverse momentum interval than previous measurements in heavy-ion collisions. This has been achieved by utilising a semi-inclusive hadron-jet coincidence technique to suppress the larger jet combinatorial background in this kinematic region. No significant modification of the $\tau_{2}/\tau_{1}$ observable for track-based jets in Pb--Pb collisions is observed relative to vacuum PYTHIA6 and PYTHIA8 references at the same collision energy. The measurements of $\tau_{2}/\tau_{1}$, together with the splitting aperture angle $\Delta R$, are also performed in pp collisions at $\sqrt{s}=7$ TeV for inclusive jets. These results are compared with PYTHIA calculations at $\sqrt{s}=7$ TeV, in order to validate the model as a vacuum reference for the Pb$-$Pb centre-of-mass energy. The PYTHIA references for $\tau_{2}/\tau_{1}$ are shifted to larger values compared to the measurement in pp collisions. This hints at a reduction in the rate of two-pronged jets in Pb--Pb collisions compared to pp collisions.

0 data tables match query

rho0 production and possible modification in Au + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 092301, 2004.
Inspire Record 624475 DOI 10.17182/hepdata.99052

We report results on rho(770)^0 -> pi+pi- production at midrapidity in p+p and peripheral Au+Au collisions at sqrt(s_NN) = 200 GeV. This is the first direct measurement of rho(770)^0 -> pi+pi- in heavy-ion collisions. The measured rho^0 peak in the invariant mass distribution is shifted by ~40 MeV/c^2 in minimum bias p+p interactions and ~70 MeV/c^2 in peripheral Au+Au collisions. The rho^0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho^0 meson mass, width, and shape due to phase space and dynamical effects are discussed.

0 data tables match query

The Multiplicity dependence of inclusive p(t) spectra from p-p collisions at s**(1/2) = 200-GeV

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 74 (2006) 032006, 2006.
Inspire Record 719969 DOI 10.17182/hepdata.102084

We report measurements of transverse momentum $p_t$ spectra for ten event multiplicity classes of p-p collisions at $\sqrt{s} = 200$ GeV. By analyzing the multiplicity dependence we find that the spectrum shape can be decomposed into a part with amplitude proportional to multiplicity and described by a L\'evy distribution on transverse mass $m_t$, and a part with amplitude proportional to multiplicity squared and described by a gaussian distribution on transverse rapidity $y_t$. The functional forms of the two parts are nearly independent of event multiplicity. The two parts can be identified with the soft and hard components of a two-component model of p-p collisions. This analysis then provides the first isolation of the hard component of the $p_t$ spectrum as a distribution of simple form on $y_t$.

0 data tables match query

Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 89 (2014) 012001, 2014.
Inspire Record 1253360 DOI 10.17182/hepdata.103061

The differential cross section and spin asymmetries for neutral pions produced within the intermediate pseudorapidity range 0.8 < {\eta} < 2.0 in polarized proton-proton collisions at sqrt{s} = 200 GeV are presented. Neutral pions were detected using the endcap electromagnetic calorimeter in the STAR detector at RHIC. The cross section was measured over a transverse momentum range of 5 < p_T < 16 GeV/c and is found to be within the scale uncertainty of a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry, A_LL, is measured in the same pseudorapidity range. This quantity is sensitive to the gluonic contribution to the proton spin, {\Delta}g(x), at low Bjorken-x (down to x approx 0.01), where it is less constrained by measurements at central pseudorapidity. The measured A_LL is consistent with model predictions. The parity-violating asymmetry, A_L, is also measured and found to be consistent with zero. The transverse single-spin asymmetry, A_N, is measured within a previously unexplored kinematic range in Feynman-x and p_T. Such measurements may aid our understanding of the on-set and kinematic dependence of the large asymmetries observed at more forward pseudorapidity ({\eta} approx 3) and their underlying mechanisms. The A_N results presented are consistent with a twist-3 model prediction of a small asymmetry within the present kinematic range.

0 data tables match query