Photoproduction of neutral pions from hydrogen in the region of the first pion-nucleon resonance

Morand, R. ; Erickson, E.F. ; Pahin, J.P. ; et al.
Phys.Rev. 180 (1969) 1299-1307, 1969.
Inspire Record 55450 DOI 10.17182/hepdata.26482

The cross section for single π0 photoproduction from hydrogen has been measured at nominal angles of 70°, 90°, 130°, and 180° for photon energies 220-400 MeV by detecting the recoil protons. The 180° measurements, taken with a new setup, avoid big corrections present in some of the previously published results. These new data allow a direct comparison with the experiment presented by the Bonn group and with the most recent theoretical predictions.

1 data table

No description provided.


Forward angle pi+- p elastic scattering differential cross-sections at T(pi) = 87-MeV to 139-MeV

Brack, J.T. ; Amaudruz, P.A. ; Ottewell, D.F. ; et al.
Phys.Rev.C 51 (1995) 929-936, 1995.
Inspire Record 400646 DOI 10.17182/hepdata.25894

Absolute π±p elastic scattering differential cross sections have been measured at five incident pion energies between 87 and 139 MeV. An active target of scintillator material (CH1.1) was used to detect recoil protons in coincidence with scattered pions. Pions were detected at forward angles between 27 and 98°c.m. where the low-energy recoil protons stop in the target. The cross sections, typically 5–10% lower than phase shift predictions for π+p and 10–20% lower for the π−p cross sections, are consistent with earlier measurements by this group.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Pion proton integral cross sections at T(pi) = 40-MeV to 284-MeV.

Kriss, B.J. ; Hoibraten, S. ; Holcomb, M.D. ; et al.
Phys.Rev.C 59 (1999) 1480-1487, 1999.
Inspire Record 500165 DOI 10.17182/hepdata.25638

Integral cross sections for the scattering of pions by protons into angles greater than 30° (lab) have been measured at a wide range of energies spanning the delta resonance using liquid hydrogen targets. Cross sections were measured for π+p scattering at 40 energies from 39.8 to 283.9 MeV and for π−p at 15 energies from 80.0 to 283.9 MeV. Comparisons with phase shift predictions from the Karlsruhe group show good agreement on resonance but significant deviations below 100 MeV.

2 data tables

The uncertainties shown include statistical and systematic contributions.

The uncertainties shown include statistical and systematic contributions.


Inclusive hadron photoproduction from longitudinally polarized protons and deuterons.

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 458 (1999) 536-544, 1999.
Inspire Record 495554 DOI 10.17182/hepdata.28074

We report measurements of the asymmetry A_parallel for inclusive hadron production on longitudinally polarized proton and deuteron targets by circularly polarized photons. The photons were produced via internal and external bremsstrahlung from an electron beam of 48.35 GeV. Asymmetries for both positive and negative signed hadrons, and a subset of identified pions, were measured in the momentum range 10<P<30 GeV at 2.75 and 5.5 degrees. Small non-zero asymmetries are observed for the proton, while the deuteron results are consistent with zero. Recent calculations do not describe the data well.

4 data tables

The asymmetry for polarized photoproduction of inclusive hadrons from a polarized proton target. The errors are statistical only.

The asymmetry for polarized photoproduction of inclusive identified pions from a polarized proton target. The errors are statistical only.

The asymmetry for polarized photoproduction of inclusive hadrons from a polarized deuteron target. The errors are statistical only.

More…

Pionic charge exchange on the proton from 40-MeV to 250-MeV.

Breitschopf, J. ; Bauer, M. ; Clement, H. ; et al.
Phys.Lett.B 639 (2006) 424-428, 2006.
Inspire Record 717060 DOI 10.17182/hepdata.31547

The total cross sections for pionic charge exchange on hydrogen were measured using a transmission technique on thin CH2 and C targets. Data were taken for pi- lab energies from 39 to 247 MeV with total errors of typically 2% over the Delta-resonance and up to 10% at the lowest energies. Deviations from the predictions of the SAID phase shift analysis in the 60 to 80 MeV region are interpreted as evidence for isospin-symmetry breaking in the s-wave amplitudes. The charge dependence of the Delta-resonance properties appears to be smaller than previously reported.

1 data table

Measured total charge exchange cross sections. The errors are the combined statistical and ststematic errors including normalisation uncertainties.