Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 760 (2016) 520-537, 2016.
Inspire Record 1468067 DOI 10.17182/hepdata.77086

A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb$^{-1}$ of proton--proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at $\sqrt{s}=13$ TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions.

10 data tables

Background fit results for regions SR-2TeV ( sumPT > 2 TeV) and SR-3TeV ( sumPT > 3 TeV) for the electron and muons channels. The errors shown are the statistical plus systematic uncertainties. The uncertainty in the total background count includes correlations between nuisance parameters and so does not reflect a quadrature sum of the uncertainties in the individual background components.

The sumPT distribution in the W+jets control region (electron channel). Expected background yields are given along with the total background uncertainty. The ttbar, W+jets and Z+jets backgrounds are normalised by the factors 0.95, 0.81 and 1.01 as obtained from the background likelihood fit. The single-top-quark and diboson background normalisations are taken from the simulation. The multijet background is obtained using a data-driven method. Additionally, the likelihood fit may constrain nuisance parameters for certain systematic uncertainties, altering the normalisation and shape of some of the distributions.

The sumPT distribution in the W+jets control region (muon channel). Expected background yields are given along with the total background uncertainty. The ttbar, W+jets and Z+jets backgrounds are normalised by the factors 0.95, 0.81 and 1.01 as obtained from the background likelihood fit. The single-top-quark and diboson background normalisations are taken from the simulation. The multijet background is obtained using a data-driven method. Additionally, the likelihood fit may constrain nuisance parameters for certain systematic uncertainties, altering the normalisation and shape of some of the distributions.

More…

Search for scalar leptoquarks in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
New J.Phys. 18 (2016) 093016, 2016.
Inspire Record 1462258 DOI 10.17182/hepdata.73322

An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in $pp$ collisions at $\sqrt{s}$ = 13 TeV at the Large Hadron Collider, have been considered. An integrated luminosity of 3.2 fb$^{-1}$, corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 GeV and 1050 GeV (1160 GeV and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results.

4 data tables

Normalisation factors for the main backgrounds obtained from the combined fit in each of the channels. The total uncertainty is given.

Search for the first generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.

Search for the second generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.

More…

Collins asymmetries in inclusive charged $KK$ and $K\pi$ pairs produced in $e^+e^-$ annihilation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 111101, 2015.
Inspire Record 1377201 DOI 10.17182/hepdata.73750

We present measurements of Collins asymmetries in the inclusive process $e^+e^- \rightarrow h_1 h_2 X$, $h_1h_2=KK,\, K\pi,\, \pi\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\pi$ asymmetries are similar to those measured for the $\pi\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.

6 data tables

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

More…

Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Production of charged pions, kaons and protons in e+e- annihilations into hadrons at sqrt{s} = 10.54 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 88 (2013) 032011, 2013.
Inspire Record 1238276 DOI 10.17182/hepdata.62088

Inclusive production cross sections of $\pi^\pm$, $K^\pm$ and $p\bar{p}$ per hadronic $e^+e^-$ annihilation event in $e^+e^-$ are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BaBar experiment at the PEP-II $B$-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified $\pi^\pm$, $K^\pm$ and $p\bar{p}$ over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a $B\bar{B}$ pair, with $B$ a bottom-quark meson, these data represent a pure $e^+e^- \rightarrow q\bar{q}$ sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the $Z^0$ resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range.

4 data tables

Differential cross section for prompt PI+-, K+- and PBAR/P production.

Differential cross section for conventional PI+-, K+- and PBAR/P production.

Integrated cross sections for prompt PI+-, K+- and PBAR/P production. The second (sys) error is the uncertainty due to the model dependence of the extrapolation.

More…

Identified charged hadron production in p+p collisions at sqrt(s)=200 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 83 (2011) 064903, 2011.
Inspire Record 886590 DOI 10.17182/hepdata.57021

Transverse momentum distributions and yields for $\pi^{\pm}$, $K^{\pm}$, $p$ and $\bar{p}$ in $p+p$ collisions at $\sqrt{s}$=200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). These data provide important baseline spectra for comparisons with identified particle spectra in heavy ion collisions at RHIC. We present the inverse slope parameter $T_{\rm inv}$, mean transverse momentum $<p_T>$ and yield per unit rapidity $dN/dy$ at each energy, and compare them to other measurements at different $\sqrt{s}$ in $p+p$ and $p+\bar{p}$ collisions. We also present the scaling properties such as $m_T$ scaling, $x_T$ scaling on the $p_T$ spectra between different energies. To discuss the mechanism of the particle production in $p+p$ collisions, the measured spectra are compared to next-to-leading-order or next-to-leading-logarithmic perturbative quantum chromodynamics calculations.

8 data tables

Invariant cross sections for inclusive PI+ and PI- production in P P collisions at a centre-of-mass energy of 200 GeV. There is an additional normalization uncertainty of 9.7 PCT.

Invariant cross sections for inclusive K+ and K- production in P P collisions at a centre-of-mass energy of 200 GeV. There is an additional normalization uncertainty of 9.7 PCT.

Invariant cross sections for inclusive P and PBAR production in P P collisions at a centre-of-mass energy of 200 GeV with feed-down weak decay corrections NOT applied. There is an additional normalization uncertainty of 9.7 PCT.

More…

Two-pion Bose-Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 696 (2011) 328-337, 2011.
Inspire Record 881884 DOI 10.17182/hepdata.56743

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.

14 data tables

Projections of the correlation function C.

Projections of the correlation function C.

Projections of the correlation function C.

More…

Midrapidity antiproton-to-proton ratio in pp collisions at $\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Phys.Rev.Lett. 105 (2010) 072002, 2010.
Inspire Record 859610 DOI 10.17182/hepdata.55557

The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

2 data tables

The PT dependence of the pbar/p ratio for the central rapidity region ABS(YRAP)<0.5.

The central rapidity pbar/p ratio as a function of the rapidity interval Ybeam-Ybaryon and centre-of-mass energy. As well as the present ALICE measurements this table also lists the values from other experiments (see the text of the paper for details).


System-size independence of directed flow at the Relativistic Heavy-Ion Collider

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 101 (2008) 252301, 2008.
Inspire Record 790350 DOI 10.17182/hepdata.102949

We measure directed flow ($v_1$) for charged particles in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} =$ 200 GeV and 62.4 GeV, as a function of pseudorapidity ($\eta$), transverse momentum ($p_t$) and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all existing models, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to different collision systems, and investigate possible explanations for the observed sign change in $v_1(p_t)$.

11 data tables

Charged particle $v_1(\eta)$ for 0-5 % centrality in Au+Au collisions at 200 GeV.

$<P_x>/<P_t>$ of charged particles as a function of pseudorapidity, for centrality 0-5% in Au+Au collisions at 200 GeV.

Charged particle $v_1(\eta)$ for 5-40 % centrality in Au+Au collisions at 200 GeV.

More…

Inclusive production of charged hadrons in photon photon collisions.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 651 (2007) 92-101, 2007.
Inspire Record 734955 DOI 10.17182/hepdata.48554

The inclusive production of charged hadrons in the collisions of quasi-real photons e+e- -> e+e- +X has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies from 183 to 209 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the hadrons are compared to theoretical calculations of up to next-to-leading order (NLO) in the strong coupling constant alpha{s}. The data are also compared to a measurement by the L3 Collaboration, in which a large deviation from the NLO predictions is observed.

12 data tables

Differential inclusive charged hadron production cross section as a function of PT.

Differential inclusive charged hadron production cross section as a function of PT.

Differential inclusive charged hadron production cross section as a function of PT.

More…