EXCLUSIVE ANNIHILATION PROCESSES IN 8.8-GEV ANTI-P P INTERACTIONS AND COMPARISONS BETWEEN ANTI-P P NONANNIHILATIONS AND P P INTERACTIONS

Ward, D.R. ; Simmons, A.J. ; Ansorge, R.E. ; et al.
Nucl.Phys.B 172 (1980) 302, 1980.
Inspire Record 158992 DOI 10.17182/hepdata.34487

We give cross sections for annihilation and non-annihilation reactions in p p interactions at 8.8 GeV. The non-annihilation data are compared with pp data from the same experiment. We compare data on resonance production and on the impact parameter structure of the final states in p p annihilation and non-annihilation and pp interactions. We investigate the charge structure of the 2 π + 2 π − π 0 final state, and find it consistent with a simple quark model.

4 data tables

NORMALIZED TO A TOTAL AP P CROSS SECTION OF 55.9 MB. ANNIHILATION CROSS SECTIONS.

NORMALIZED TO A TOTAL AP P CROSS SECTION OF 55.9 MB. NON-ANNIHILATION CROSS SECTIONS.

NORMALIZED TO A TOTAL P P CROSS SECTION OF 40.0 MB.

More…

A Study of the Charge Exchange Reaction p p --> n Delta++ (1232) at ISR Energies

de Kerret, H. ; Nagy, E. ; Orr, R.S. ; et al.
Phys.Lett.B 69 (1977) 372-376, 1977.
Inspire Record 120459 DOI 10.17182/hepdata.27539

We report on a study of the charge-exchange reaction pp → nΔ ++ (1232) at the CERN intersecting storage rings (ISR) in the energy range √ s = 23 to 53 GeV. From our analysis of the energy dependence of the total cross-section, of the differential cross-section d σ /d t and of the decay angular distributions we find evidence that pion exchange is dominant up to √ s = 23 GeV and that ( ϱ +A 2 ) exchange dominates the reaction for √ s ⩾ 30 GeV, as described by simple Regge-pole models.

6 data tables

THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.

THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.

No description provided.

More…

One pion production in pp collisions at 16.2 gev/c

Gnat, Y. ; Alexander, G. ; Benary, O. ; et al.
Nucl.Phys.B 54 (1973) 333-354, 1973.
Inspire Record 84174 DOI 10.17182/hepdata.32585

A study of pp interactions at an incident momentum of 16.2 GeV/ c leading to two-prong non-strange final states was carried out in an exposure of the 2m CERN hydrogen bubble chamber. The c.m. angle and momentum distributions for the outgoing particles in the final states pn π + and pp π 0 are presented and discussed. These final states were analysed in terms of quasi two-body final states - N(Nπ), with the pion-nucleon system in an I = 1 2 or I = 3 2 state. A determination of these two isospin amplitudes and their interference term is then carried out. The reaction pp → pn π + is found to be well described by a Reggeized exchange model, as well as by a double Regge-exchange model.

1 data table

No description provided.